001     892391
005     20210902140218.0
024 7 _ |a 10.1016/j.ymben.2021.03.011
|2 doi
024 7 _ |a 1096-7176
|2 ISSN
024 7 _ |a 1096-7184
|2 ISSN
024 7 _ |a 2128/27740
|2 Handle
024 7 _ |a altmetric:104225871
|2 altmetric
024 7 _ |a 33865980
|2 pmid
024 7 _ |a WOS:000658808700005
|2 WOS
037 _ _ |a FZJ-2021-02052
082 _ _ |a 610
100 1 _ |a Tiso, Till
|0 0000-0003-4420-5609
|b 0
245 _ _ |a Towards bio-upcycling of polyethylene terephthalate
260 _ _ |a Orlando, Fla.
|c 2021
|b Academic Press
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1630575340_18928
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
500 _ _ |a Biotechnologie 1
520 _ _ |a Over 359 million tons of plastics were produced worldwide in 2018, with significant growth expected in the near future, resulting in the global challenge of end-of-life management. The recent identification of enzymes that degrade plastics previously considered non-biodegradable opens up opportunities to steer the plastic recycling industry into the realm of biotechnology.Here, the sequential conversion of post-consumer polyethylene terephthalate (PET) into two types of bioplastics is presented: a medium chain-length polyhydroxyalkanoate (PHA) and a novel bio-based poly(amide urethane) (bio-PU). PET films are hydrolyzed by a thermostable polyester hydrolase yielding highly pure terephthalate and ethylene glycol. The obtained hydrolysate is used directly as a feedstock for a terephthalate-degrading Pseudomonas umsongensis GO16, also evolved to efficiently metabolize ethylene glycol, to produce PHA. The strain is further modified to secrete hydroxyalkanoyloxy-alkanoates (HAAs), which are used as monomers for the chemo-catalytic synthesis of bio-PU. In short, a novel value-chain for PET upcycling is shown that circumvents the costly purification of PET monomers, adding technological flexibility to the global challenge of end-of-life management of plastics.
536 _ _ |a 2172 - Utilization of renewable carbon and energy sources and engineering of ecosystem functions (POF4-217)
|0 G:(DE-HGF)POF4-2172
|c POF4-217
|f POF IV
|x 0
588 _ _ |a Dataset connected to DataCite
700 1 _ |a Narancic, Tanja
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Wei, Ren
|0 0000-0003-3876-1350
|b 2
700 1 _ |a Pollet, Eric
|0 0000-0002-4920-7024
|b 3
700 1 _ |a Beagan, Niall
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Schröder, Katja
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Honak, Annett
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Jiang, Mengying
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Kenny, Shane T.
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Wierckx, Nick
|0 P:(DE-Juel1)176653
|b 9
700 1 _ |a Perrin, Rémi
|0 P:(DE-HGF)0
|b 10
700 1 _ |a Avérous, Luc
|0 P:(DE-HGF)0
|b 11
700 1 _ |a Zimmermann, Wolfgang
|0 0000-0002-5730-6663
|b 12
700 1 _ |a O'Connor, Kevin
|0 P:(DE-HGF)0
|b 13
700 1 _ |a Blank, Lars M.
|0 0000-0003-0961-4976
|b 14
|e Corresponding author
773 _ _ |a 10.1016/j.ymben.2021.03.011
|g Vol. 66, p. 167 - 178
|0 PERI:(DE-600)1471017-1
|p 167 - 178
|t Metabolic engineering
|v 66
|y 2021
|x 1096-7176
856 4 _ |u https://juser.fz-juelich.de/record/892391/files/1-s2.0-S1096717621000471-main.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:892391
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 9
|6 P:(DE-Juel1)176653
913 1 _ |a DE-HGF
|b Forschungsbereich Erde und Umwelt
|l Erde im Wandel – Unsere Zukunft nachhaltig gestalten
|1 G:(DE-HGF)POF4-210
|0 G:(DE-HGF)POF4-217
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-200
|4 G:(DE-HGF)POF
|v Für eine nachhaltige Bio-Ökonomie – von Ressourcen zu Produkten
|9 G:(DE-HGF)POF4-2172
|x 0
913 0 _ |a DE-HGF
|b Programmungebundene Forschung
|l ohne Programm
|1 G:(DE-HGF)POF3-890
|0 G:(DE-HGF)POF3-899
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-800
|4 G:(DE-HGF)POF
|v ohne Topic
|x 0
914 1 _ |y 2021
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2021-01-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-01-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2021-01-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2021-01-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2021-01-28
915 _ _ |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
|0 LIC:(DE-HGF)CCBYNCND4
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b METAB ENG : 2019
|d 2021-01-28
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b METAB ENG : 2019
|d 2021-01-28
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-01-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2021-01-28
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2021-01-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1060
|2 StatID
|b Current Contents - Agriculture, Biology and Environmental Sciences
|d 2021-01-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2021-01-28
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2021-01-28
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2021-01-28
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IBG-1-20101118
|k IBG-1
|l Biotechnologie
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IBG-1-20101118
980 _ _ |a UNRESTRICTED
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21