000892411 001__ 892411
000892411 005__ 20230418142825.0
000892411 0247_ $$2doi$$a10.1111/tra.12788
000892411 0247_ $$2ISSN$$a1398-9219
000892411 0247_ $$2ISSN$$a1600-0854
000892411 0247_ $$2Handle$$a2128/27890
000892411 0247_ $$2altmetric$$aaltmetric:104982803
000892411 0247_ $$2pmid$$a33890356
000892411 0247_ $$2WOS$$aWOS:000647262700001
000892411 037__ $$aFZJ-2021-02069
000892411 082__ $$a570
000892411 1001_ $$0P:(DE-Juel1)161207$$aConrad, Rachel$$b0$$ufzj
000892411 245__ $$aCa V β controls the endocytic turnover of Ca V 1 .2 L‐type calcium channel
000892411 260__ $$aOxford$$bWiley-Blackwell$$c2021
000892411 3367_ $$2DRIVER$$aarticle
000892411 3367_ $$2DataCite$$aOutput Types/Journal article
000892411 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1653471593_22562
000892411 3367_ $$2BibTeX$$aARTICLE
000892411 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000892411 3367_ $$00$$2EndNote$$aJournal Article
000892411 520__ $$aMembrane depolarization activates the multisubunit CaV1.2 L-type calcium channel initiating various excitation coupling responses. Intracellular trafficking into and out of the plasma membrane regulates the channel's surface expression and stability, and thus, the strength of CaV1.2-mediated Ca2+ signals. The mechanisms regulating the residency time of the channel at the cell membrane are unclear. Here, we coexpressed the channel core complex CaV1.2α1 pore-forming and auxiliary CaVβ subunits and analyzed their trafficking dynamics from single-particle-tracking trajectories. Speed histograms obtained for each subunit were best fitted to a sum of diffusive and directed motion terms. The same mean speed for the highest-mobility state underlying directed motion was found for all subunits. The frequency of this component increased by covalent linkage of CaVβ to CaV1.2α1 suggesting that high-speed transport occurs in association with CaVβ. Selective tracking of CaV1.2α1 along the postendocytic pathway failed to show the highly mobile state, implying CaVβ-independent retrograde transport. Retrograde speeds of CaV1.2α1 are compatible with myosin VI-mediated backward transport. Moreover, residency time at the cell surface was significantly prolonged when CaV1.2α1 was covalently linked to CaVβ. Thus, CaVβ promotes fast transport speed along anterograde trafficking and acts as a molecular switch controlling the endocytic turnover of L-type calcium channels.
000892411 536__ $$0G:(DE-HGF)POF4-524$$a524 - Molecular and Cellular Information Processing (POF4-524)$$cPOF4-524$$fPOF IV$$x0
000892411 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000892411 7001_ $$0P:(DE-Juel1)157846$$aKortzak, Daniel$$b1$$ufzj
000892411 7001_ $$0P:(DE-Juel1)165956$$aGuzman, Gustavo A.$$b2$$ufzj
000892411 7001_ $$0P:(DE-HGF)0$$aMiranda-Laferte, Erick$$b3
000892411 7001_ $$0P:(DE-Juel1)151357$$aHidalgo, Patricia$$b4$$eCorresponding author
000892411 773__ $$0PERI:(DE-600)2020962-9$$a10.1111/tra.12788$$gp. tra.12788$$n6$$p180-193$$tTraffic$$v22$$x1600-0854$$y2021
000892411 8564_ $$uhttps://juser.fz-juelich.de/record/892411/files/Invoice_6450598.pdf
000892411 8564_ $$uhttps://juser.fz-juelich.de/record/892411/files/tra.12788.pdf$$yOpenAccess
000892411 8767_ $$d2021-05-06$$eHybrid-OA$$jDEAL$$lDEAL: Wiley
000892411 8767_ $$86450598$$92021-05-14$$a1200181506$$d2022-06-02$$ePage charges$$jZahlung erfolgt$$zUSD 2640,-
000892411 909CO $$ooai:juser.fz-juelich.de:892411$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC_DEAL$$pOpenAPC$$popen_access$$popenaire
000892411 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161207$$aForschungszentrum Jülich$$b0$$kFZJ
000892411 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)157846$$aForschungszentrum Jülich$$b1$$kFZJ
000892411 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)165956$$aForschungszentrum Jülich$$b2$$kFZJ
000892411 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-HGF)0$$aForschungszentrum Jülich$$b3$$kFZJ
000892411 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)151357$$aForschungszentrum Jülich$$b4$$kFZJ
000892411 9131_ $$0G:(DE-HGF)POF4-524$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vMolecular and Cellular Information Processing$$x0
000892411 9130_ $$0G:(DE-HGF)POF3-552$$1G:(DE-HGF)POF3-550$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lBioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences$$vEngineering Cell Function$$x0
000892411 9141_ $$y2021
000892411 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-01-27
000892411 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-01-27
000892411 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2021-01-27
000892411 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2021-01-27
000892411 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2021-01-27
000892411 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
000892411 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bTRAFFIC : 2019$$d2021-01-27
000892411 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2021-01-27$$wger
000892411 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2021-01-27
000892411 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-27
000892411 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-01-27
000892411 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2021-01-27
000892411 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000892411 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2021-01-27
000892411 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-27
000892411 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-01-27
000892411 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
000892411 915pc $$0PC:(DE-HGF)0001$$2APC$$aLocal Funding
000892411 915pc $$0PC:(DE-HGF)0002$$2APC$$aDFG OA Publikationskosten
000892411 915pc $$0PC:(DE-HGF)0120$$2APC$$aDEAL: Wiley 2019
000892411 920__ $$lyes
000892411 9201_ $$0I:(DE-Juel1)IBI-1-20200312$$kIBI-1$$lMolekular- und Zellphysiologie$$x0
000892411 980__ $$ajournal
000892411 980__ $$aVDB
000892411 980__ $$aI:(DE-Juel1)IBI-1-20200312
000892411 980__ $$aAPC
000892411 980__ $$aUNRESTRICTED
000892411 9801_ $$aAPC
000892411 9801_ $$aFullTexts