001     892411
005     20230418142825.0
024 7 _ |a 10.1111/tra.12788
|2 doi
024 7 _ |a 1398-9219
|2 ISSN
024 7 _ |a 1600-0854
|2 ISSN
024 7 _ |a 2128/27890
|2 Handle
024 7 _ |a altmetric:104982803
|2 altmetric
024 7 _ |a 33890356
|2 pmid
024 7 _ |a WOS:000647262700001
|2 WOS
037 _ _ |a FZJ-2021-02069
082 _ _ |a 570
100 1 _ |a Conrad, Rachel
|0 P:(DE-Juel1)161207
|b 0
|u fzj
245 _ _ |a Ca V β controls the endocytic turnover of Ca V 1 .2 L‐type calcium channel
260 _ _ |a Oxford
|c 2021
|b Wiley-Blackwell
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1653471593_22562
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Membrane depolarization activates the multisubunit CaV1.2 L-type calcium channel initiating various excitation coupling responses. Intracellular trafficking into and out of the plasma membrane regulates the channel's surface expression and stability, and thus, the strength of CaV1.2-mediated Ca2+ signals. The mechanisms regulating the residency time of the channel at the cell membrane are unclear. Here, we coexpressed the channel core complex CaV1.2α1 pore-forming and auxiliary CaVβ subunits and analyzed their trafficking dynamics from single-particle-tracking trajectories. Speed histograms obtained for each subunit were best fitted to a sum of diffusive and directed motion terms. The same mean speed for the highest-mobility state underlying directed motion was found for all subunits. The frequency of this component increased by covalent linkage of CaVβ to CaV1.2α1 suggesting that high-speed transport occurs in association with CaVβ. Selective tracking of CaV1.2α1 along the postendocytic pathway failed to show the highly mobile state, implying CaVβ-independent retrograde transport. Retrograde speeds of CaV1.2α1 are compatible with myosin VI-mediated backward transport. Moreover, residency time at the cell surface was significantly prolonged when CaV1.2α1 was covalently linked to CaVβ. Thus, CaVβ promotes fast transport speed along anterograde trafficking and acts as a molecular switch controlling the endocytic turnover of L-type calcium channels.
536 _ _ |a 524 - Molecular and Cellular Information Processing (POF4-524)
|0 G:(DE-HGF)POF4-524
|c POF4-524
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Kortzak, Daniel
|0 P:(DE-Juel1)157846
|b 1
|u fzj
700 1 _ |a Guzman, Gustavo A.
|0 P:(DE-Juel1)165956
|b 2
|u fzj
700 1 _ |a Miranda-Laferte, Erick
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Hidalgo, Patricia
|0 P:(DE-Juel1)151357
|b 4
|e Corresponding author
773 _ _ |a 10.1111/tra.12788
|g p. tra.12788
|0 PERI:(DE-600)2020962-9
|n 6
|p 180-193
|t Traffic
|v 22
|y 2021
|x 1600-0854
856 4 _ |u https://juser.fz-juelich.de/record/892411/files/Invoice_6450598.pdf
856 4 _ |u https://juser.fz-juelich.de/record/892411/files/tra.12788.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:892411
|p openaire
|p open_access
|p OpenAPC
|p OpenAPC_DEAL
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)161207
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)157846
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)165956
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)151357
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-524
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Molecular and Cellular Information Processing
|x 0
913 0 _ |a DE-HGF
|b Key Technologies
|l BioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences
|1 G:(DE-HGF)POF3-550
|0 G:(DE-HGF)POF3-552
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-500
|4 G:(DE-HGF)POF
|v Engineering Cell Function
|x 0
914 1 _ |y 2021
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2021-01-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2021-01-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2021-01-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2021-01-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2021-01-27
915 _ _ |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
|0 LIC:(DE-HGF)CCBYNCND4
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b TRAFFIC : 2019
|d 2021-01-27
915 _ _ |a DEAL Wiley
|0 StatID:(DE-HGF)3001
|2 StatID
|d 2021-01-27
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2021-01-27
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-01-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2021-01-27
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2021-01-27
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2021-01-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-01-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2021-01-27
915 p c |a APC keys set
|2 APC
|0 PC:(DE-HGF)0000
915 p c |a Local Funding
|2 APC
|0 PC:(DE-HGF)0001
915 p c |a DFG OA Publikationskosten
|2 APC
|0 PC:(DE-HGF)0002
915 p c |a DEAL: Wiley 2019
|2 APC
|0 PC:(DE-HGF)0120
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IBI-1-20200312
|k IBI-1
|l Molekular- und Zellphysiologie
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IBI-1-20200312
980 _ _ |a APC
980 _ _ |a UNRESTRICTED
980 1 _ |a APC
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21