000892429 001__ 892429
000892429 005__ 20220930130315.0
000892429 0247_ $$2doi$$a10.1190/geo2020-0283.1
000892429 0247_ $$2ISSN$$a0016-8033
000892429 0247_ $$2ISSN$$a1942-2156
000892429 0247_ $$2Handle$$a2128/28207
000892429 0247_ $$2WOS$$aWOS:000663710300002
000892429 037__ $$aFZJ-2021-02075
000892429 082__ $$a550
000892429 1001_ $$0P:(DE-Juel1)169315$$aZhou, Zhen$$b0$$eCorresponding author
000892429 245__ $$aImprovement of ground-penetrating radar full-waveform inversion images using cone penetration test data
000892429 260__ $$aAlexandria, Va.$$bGeoScienceWorld$$c2021
000892429 3367_ $$2DRIVER$$aarticle
000892429 3367_ $$2DataCite$$aOutput Types/Journal article
000892429 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1626416819_9287
000892429 3367_ $$2BibTeX$$aARTICLE
000892429 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000892429 3367_ $$00$$2EndNote$$aJournal Article
000892429 520__ $$aDetailed characterization of aquifers is critical and challenging due to the existence of heterogeneous small-scale high-contrast layers. For an improved characterization of subsurface hydrologic characteristics, crosshole ground-penetrating radar (GPR) and cone penetration test (CPT) measurements are performed. In comparison to the CPT approach, which can only provide 1D high-resolution data along vertical profiles, crosshole GPR enables measuring 2D cross sections between two boreholes. In general, a standard inversion method for GPR data is the ray-based approach, which considers only a small amount of information and can therefore only provide limited resolution. In the past few decades, full-waveform inversion (FWI) of crosshole GPR data in the time domain has matured, and it provides inversion results with higher resolution by exploiting the full-recorded waveform information. However, FWI results are limited due to complex underground structures and the nonlinear nature of the method. A new approach that uses CPT data in the inversion process is applied to enhance the resolution of the final relative permittivity FWI results by updating the effective source wavelet. The updated effective source wavelet possesses a priori CPT information and a larger bandwidth. Using the same starting models, a synthetic model comparison between the conventional and updated FWI results demonstrates that the updated FWI method provides reliable and more consistent structures. To test the method, five experimental GPR cross section results are analyzed with the standard FWI and the new proposed updated approach. The synthetic and experimental results indicate the potential of improving the reconstruction of subsurface aquifer structures by combining conventional 2D FWI results and 1D CPT data.
000892429 536__ $$0G:(DE-HGF)POF4-2173$$a2173 - Agro-biogeosystems: controls, feedbacks and impact (POF4-217)$$cPOF4-217$$fPOF IV$$x0
000892429 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000892429 7001_ $$0P:(DE-Juel1)129483$$aKlotzsche, Anja$$b1$$eCorresponding author
000892429 7001_ $$0P:(DE-Juel1)169434$$aSchmäck, Jessica$$b2
000892429 7001_ $$0P:(DE-Juel1)129549$$aVereecken, Harry$$b3$$ufzj
000892429 7001_ $$0P:(DE-Juel1)129561$$avan der Kruk, Jan$$b4
000892429 773__ $$0PERI:(DE-600)2033021-2$$a10.1190/geo2020-0283.1$$gVol. 86, no. 3, p. H13 - H25$$n3$$pH13 - H25$$tGeophysics$$v86$$x0016-8033$$y2021
000892429 8564_ $$uhttps://juser.fz-juelich.de/record/892429/files/Invoice_0001035540.pdf
000892429 8564_ $$uhttps://juser.fz-juelich.de/record/892429/files/GEO-2020-0283.R3_Proof_fl_1214.pdf$$yOpenAccess
000892429 8767_ $$80001035540$$92021-05-04$$d2021-05-10$$ePage charges$$jZahlung erfolgt$$zUSD 825,- Belegnr. 1200166944
000892429 909CO $$ooai:juser.fz-juelich.de:892429$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire$$pdnbdelivery
000892429 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)169315$$aForschungszentrum Jülich$$b0$$kFZJ
000892429 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129483$$aForschungszentrum Jülich$$b1$$kFZJ
000892429 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)169434$$aForschungszentrum Jülich$$b2$$kFZJ
000892429 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129549$$aForschungszentrum Jülich$$b3$$kFZJ
000892429 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129561$$aForschungszentrum Jülich$$b4$$kFZJ
000892429 9131_ $$0G:(DE-HGF)POF4-217$$1G:(DE-HGF)POF4-210$$2G:(DE-HGF)POF4-200$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-2173$$aDE-HGF$$bForschungsbereich Erde und Umwelt$$lErde im Wandel – Unsere Zukunft nachhaltig gestalten$$vFür eine nachhaltige Bio-Ökonomie – von Ressourcen zu Produkten$$x0
000892429 9141_ $$y2021
000892429 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-01-27
000892429 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2021-01-27
000892429 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-01-27
000892429 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-27
000892429 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2021-01-27
000892429 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000892429 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bGEOPHYSICS : 2019$$d2021-01-27
000892429 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-27
000892429 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-01-27
000892429 9201_ $$0I:(DE-Juel1)IBG-3-20101118$$kIBG-3$$lAgrosphäre$$x0
000892429 980__ $$ajournal
000892429 980__ $$aVDB
000892429 980__ $$aUNRESTRICTED
000892429 980__ $$aI:(DE-Juel1)IBG-3-20101118
000892429 980__ $$aAPC
000892429 9801_ $$aAPC
000892429 9801_ $$aFullTexts