001     892429
005     20220930130315.0
024 7 _ |a 10.1190/geo2020-0283.1
|2 doi
024 7 _ |a 0016-8033
|2 ISSN
024 7 _ |a 1942-2156
|2 ISSN
024 7 _ |a 2128/28207
|2 Handle
024 7 _ |a WOS:000663710300002
|2 WOS
037 _ _ |a FZJ-2021-02075
082 _ _ |a 550
100 1 _ |a Zhou, Zhen
|0 P:(DE-Juel1)169315
|b 0
|e Corresponding author
245 _ _ |a Improvement of ground-penetrating radar full-waveform inversion images using cone penetration test data
260 _ _ |a Alexandria, Va.
|c 2021
|b GeoScienceWorld
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1626416819_9287
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Detailed characterization of aquifers is critical and challenging due to the existence of heterogeneous small-scale high-contrast layers. For an improved characterization of subsurface hydrologic characteristics, crosshole ground-penetrating radar (GPR) and cone penetration test (CPT) measurements are performed. In comparison to the CPT approach, which can only provide 1D high-resolution data along vertical profiles, crosshole GPR enables measuring 2D cross sections between two boreholes. In general, a standard inversion method for GPR data is the ray-based approach, which considers only a small amount of information and can therefore only provide limited resolution. In the past few decades, full-waveform inversion (FWI) of crosshole GPR data in the time domain has matured, and it provides inversion results with higher resolution by exploiting the full-recorded waveform information. However, FWI results are limited due to complex underground structures and the nonlinear nature of the method. A new approach that uses CPT data in the inversion process is applied to enhance the resolution of the final relative permittivity FWI results by updating the effective source wavelet. The updated effective source wavelet possesses a priori CPT information and a larger bandwidth. Using the same starting models, a synthetic model comparison between the conventional and updated FWI results demonstrates that the updated FWI method provides reliable and more consistent structures. To test the method, five experimental GPR cross section results are analyzed with the standard FWI and the new proposed updated approach. The synthetic and experimental results indicate the potential of improving the reconstruction of subsurface aquifer structures by combining conventional 2D FWI results and 1D CPT data.
536 _ _ |a 2173 - Agro-biogeosystems: controls, feedbacks and impact (POF4-217)
|0 G:(DE-HGF)POF4-2173
|c POF4-217
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Klotzsche, Anja
|0 P:(DE-Juel1)129483
|b 1
|e Corresponding author
700 1 _ |a Schmäck, Jessica
|0 P:(DE-Juel1)169434
|b 2
700 1 _ |a Vereecken, Harry
|0 P:(DE-Juel1)129549
|b 3
|u fzj
700 1 _ |a van der Kruk, Jan
|0 P:(DE-Juel1)129561
|b 4
773 _ _ |a 10.1190/geo2020-0283.1
|g Vol. 86, no. 3, p. H13 - H25
|0 PERI:(DE-600)2033021-2
|n 3
|p H13 - H25
|t Geophysics
|v 86
|y 2021
|x 0016-8033
856 4 _ |u https://juser.fz-juelich.de/record/892429/files/Invoice_0001035540.pdf
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/892429/files/GEO-2020-0283.R3_Proof_fl_1214.pdf
909 C O |o oai:juser.fz-juelich.de:892429
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)169315
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)129483
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)169434
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)129549
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)129561
913 1 _ |a DE-HGF
|b Forschungsbereich Erde und Umwelt
|l Erde im Wandel – Unsere Zukunft nachhaltig gestalten
|1 G:(DE-HGF)POF4-210
|0 G:(DE-HGF)POF4-217
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-200
|4 G:(DE-HGF)POF
|v Für eine nachhaltige Bio-Ökonomie – von Ressourcen zu Produkten
|9 G:(DE-HGF)POF4-2173
|x 0
914 1 _ |y 2021
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2021-01-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2021-01-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2021-01-27
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-01-27
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2021-01-27
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b GEOPHYSICS : 2019
|d 2021-01-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-01-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2021-01-27
920 1 _ |0 I:(DE-Juel1)IBG-3-20101118
|k IBG-3
|l Agrosphäre
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IBG-3-20101118
980 _ _ |a APC
980 1 _ |a APC
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21