000892430 001__ 892430
000892430 005__ 20240627202006.0
000892430 0247_ $$2doi$$a10.1038/s42003-021-02055-8
000892430 0247_ $$2Handle$$a2128/28656
000892430 0247_ $$2altmetric$$aaltmetric:106053620
000892430 0247_ $$2pmid$$apmid:33953328
000892430 0247_ $$2WOS$$aWOS:000656248000007
000892430 037__ $$aFZJ-2021-02076
000892430 041__ $$aEnglish
000892430 082__ $$a570
000892430 1001_ $$0P:(DE-HGF)0$$aWruck, Florian$$b0
000892430 245__ $$aThe ribosome modulates folding inside the ribosomal exit tunnel
000892430 260__ $$aLondon$$bSpringer Nature$$c2021
000892430 3367_ $$2DRIVER$$aarticle
000892430 3367_ $$2DataCite$$aOutput Types/Journal article
000892430 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1719492687_19429
000892430 3367_ $$2BibTeX$$aARTICLE
000892430 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000892430 3367_ $$00$$2EndNote$$aJournal Article
000892430 520__ $$aProteins commonly fold co-translationally at the ribosome, while the nascent chain emerges from the ribosomal exit tunnel. Protein domains that are sufficiently small can even fold while still located inside the tunnel. However, the effect of the tunnel on the folding dynamics of these domains is not well understood. Here, we combine optical tweezers with single-molecule FRET and molecular dynamics simulations to investigate folding of the small zinc-finger domain ADR1a inside and at the vestibule of the ribosomal tunnel. The tunnel is found to accelerate folding and stabilize the folded state, reminiscent of the effects of chaperonins. However, a simple mechanism involving stabilization by confinement does not explain the results. Instead, it appears that electrostatic interactions between the protein and ribosome contribute to the observed folding acceleration and stabilization of ADR1a.
000892430 536__ $$0G:(DE-HGF)POF4-5352$$a5352 - Understanding the Functionality of Soft Matter and Biomolecular Systems (POF4-535)$$cPOF4-535$$fPOF IV$$x0
000892430 536__ $$0G:(DE-HGF)POF4-5241$$a5241 - Molecular Information Processing in Cellular Systems (POF4-524)$$cPOF4-524$$fPOF IV$$x1
000892430 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000892430 7001_ $$0P:(DE-HGF)0$$aTian, Pengfei$$b1
000892430 7001_ $$0P:(DE-HGF)0$$aKudva, Renuka$$b2
000892430 7001_ $$00000-0002-7893-3543$$aBest, Robert B.$$b3
000892430 7001_ $$0P:(DE-HGF)0$$avon Heijne, Gunnar$$b4
000892430 7001_ $$0P:(DE-HGF)0$$aTans, Sander J.$$b5
000892430 7001_ $$0P:(DE-Juel1)131971$$aKatranidis, Alexandros$$b6$$eCorresponding author
000892430 773__ $$0PERI:(DE-600)2919698-X$$a10.1038/s42003-021-02055-8$$gVol. 4, no. 1, p. 523$$n1$$p523$$tCommunications biology$$v4$$x2399-3642$$y2021
000892430 8564_ $$uhttps://juser.fz-juelich.de/record/892430/files/PDF.js%20viewer.pdf
000892430 8564_ $$uhttps://juser.fz-juelich.de/record/892430/files/s42003-021-02055-8.pdf$$yOpenAccess
000892430 8767_ $$8SN-2021-00640-b$$92021-10-27$$d2021-11-05$$eAPC$$jDEAL$$lDEAL: Springer$$zBelegnr.: 1200173122
000892430 909CO $$ooai:juser.fz-juelich.de:892430$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$popenaire$$pOpenAPC$$popen_access
000892430 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131971$$aForschungszentrum Jülich$$b6$$kFZJ
000892430 9131_ $$0G:(DE-HGF)POF4-535$$1G:(DE-HGF)POF4-530$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5352$$aDE-HGF$$bKey Technologies$$lMaterials Systems Engineering$$vMaterials Information Discovery$$x0
000892430 9131_ $$0G:(DE-HGF)POF4-524$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5241$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vMolecular and Cellular Information Processing$$x1
000892430 9141_ $$y2021
000892430 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-09-03
000892430 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-09-03
000892430 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2020-09-03
000892430 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2020-09-03
000892430 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000892430 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record$$d2020-09-03
000892430 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2020-09-03
000892430 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2020-09-03
000892430 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-09-03
000892430 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2020-09-03
000892430 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-09-03
000892430 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000892430 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Blind peer review$$d2020-09-03
000892430 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2020-09-03
000892430 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2020-09-03
000892430 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-09-03
000892430 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central$$d2020-09-03
000892430 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-09-03
000892430 920__ $$lyes
000892430 9201_ $$0I:(DE-Juel1)IBI-6-20200312$$kIBI-6$$lZelluläre Strukturbiologie$$x0
000892430 980__ $$ajournal
000892430 980__ $$aVDB
000892430 980__ $$aI:(DE-Juel1)IBI-6-20200312
000892430 980__ $$aAPC
000892430 980__ $$aUNRESTRICTED
000892430 9801_ $$aAPC
000892430 9801_ $$aFullTexts
000892430 981__ $$aI:(DE-Juel1)ER-C-3-20170113