000892433 001__ 892433
000892433 005__ 20210623131804.0
000892433 0247_ $$2doi$$a10.2967/jnumed.120.244061
000892433 0247_ $$2ISSN$$a0022-3123
000892433 0247_ $$2ISSN$$a0097-9058
000892433 0247_ $$2ISSN$$a0161-5505
000892433 0247_ $$2ISSN$$a1535-5667
000892433 0247_ $$2ISSN$$a2159-662X
000892433 0247_ $$2Handle$$a2128/27760
000892433 0247_ $$2altmetric$$aaltmetric:85300338
000892433 0247_ $$2pmid$$a32620704
000892433 0247_ $$2WOS$$aWOS:000621322300018
000892433 037__ $$aFZJ-2021-02079
000892433 041__ $$aEnglish
000892433 082__ $$a610
000892433 1001_ $$0P:(DE-Juel1)184744$$aHammes, Jochen$$b0$$eCorresponding author$$ufzj
000892433 245__ $$aOne-Stop Shop: 18 F-Flortaucipir PET Differentiates Amyloid-Positive and -Negative Forms of Neurodegenerative Diseases
000892433 260__ $$aNew York, NY$$bSoc.$$c2021
000892433 3367_ $$2DRIVER$$aarticle
000892433 3367_ $$2DataCite$$aOutput Types/Journal article
000892433 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1620386693_3363
000892433 3367_ $$2BibTeX$$aARTICLE
000892433 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000892433 3367_ $$00$$2EndNote$$aJournal Article
000892433 520__ $$aTau protein aggregations are a hallmark of amyloid-associated Alzheimer disease and some forms of non–amyloid-associated frontotemporal lobar degeneration. In recent years, several tracers for in vivo tau imaging have been under evaluation. This study investigated the ability of 18F-flortaucipir PET not only to assess tau positivity but also to differentiate between amyloid-positive and -negative forms of neurodegeneration on the basis of different 18F-flortaucipir PET signatures. Methods: The 18F-flortaucipir PET data of 35 patients with amyloid-positive neurodegeneration, 19 patients with amyloid-negative neurodegeneration, and 17 healthy controls were included in a data-driven scaled subprofile model (SSM)/principal-component analysis (PCA) identifying spatial covariance patterns. SSM/PCA pattern expression strengths were tested for their ability to predict amyloid status in a receiver-operating-characteristic analysis and validated with a leave-one-out approach. Results: Pattern expression strengths predicted amyloid status with a sensitivity of 0.94 and a specificity of 0.83. A support vector machine classification based on pattern expression strengths in 2 different SSM/PCA components yielded a prediction accuracy of 98%. Anatomically, prediction performance was driven by parietooccipital gray matter in amyloid-positive patients versus predominant white matter binding in amyloid-negative patients. Conclusion: SSM/PCA-derived binding patterns of 18F-flortaucipir differentiate between amyloid-positive and -negative neurodegenerative diseases with high accuracy. 18F-flortaucipir PET alone may convey additional information equivalent to that from amyloid PET. Together with a perfusion-weighted early-phase acquisition (18F-FDG PET–equivalent), a single scan potentially contains comprehensive information on amyloid (A), tau (T), and neurodegeneration (N) status as required by recent biomarker classification algorithms (A/T/N).
000892433 536__ $$0G:(DE-HGF)POF4-525$$a525 - Decoding Brain Organization and Dysfunction (POF4-525)$$cPOF4-525$$fPOF IV$$x0
000892433 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000892433 7001_ $$0P:(DE-Juel1)166265$$aBischof, Gérard N.$$b1$$ufzj
000892433 7001_ $$0P:(DE-HGF)0$$aBohn, Karl P.$$b2
000892433 7001_ $$0P:(DE-Juel1)131736$$aOnur, Özgür$$b3$$ufzj
000892433 7001_ $$0P:(DE-HGF)0$$aSchneider, Anja$$b4
000892433 7001_ $$0P:(DE-HGF)0$$aFliessbach, Klaus$$b5
000892433 7001_ $$0P:(DE-Juel1)178642$$aHönig, Merle C$$b6$$ufzj
000892433 7001_ $$0P:(DE-HGF)0$$aJessen, Frank$$b7
000892433 7001_ $$0P:(DE-Juel1)166419$$aNeumaier, Bernd$$b8$$ufzj
000892433 7001_ $$0P:(DE-Juel1)177611$$aDrzezga, Alexander$$b9$$ufzj
000892433 7001_ $$0P:(DE-Juel1)169110$$avan Eimeren, Thilo$$b10
000892433 773__ $$0PERI:(DE-600)2040222-3$$a10.2967/jnumed.120.244061$$gVol. 62, no. 2, p. 240 - 246$$n2$$p240 - 246$$tJournal of nuclear medicine$$v62$$x2159-662X$$y2021
000892433 8564_ $$uhttps://juser.fz-juelich.de/record/892433/files/Hammes_2021_JNuclMed_Connectivity-related%20roles%20of...-1.pdf
000892433 8564_ $$uhttps://juser.fz-juelich.de/record/892433/files/jnumed.120.244061.full.pdf$$yOpenAccess
000892433 909CO $$ooai:juser.fz-juelich.de:892433$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000892433 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)184744$$aForschungszentrum Jülich$$b0$$kFZJ
000892433 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)166265$$aForschungszentrum Jülich$$b1$$kFZJ
000892433 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131736$$aForschungszentrum Jülich$$b3$$kFZJ
000892433 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)178642$$aForschungszentrum Jülich$$b6$$kFZJ
000892433 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)166419$$aForschungszentrum Jülich$$b8$$kFZJ
000892433 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)177611$$aForschungszentrum Jülich$$b9$$kFZJ
000892433 9130_ $$0G:(DE-HGF)POF3-572$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$v(Dys-)function and Plasticity$$x0
000892433 9131_ $$0G:(DE-HGF)POF4-525$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vDecoding Brain Organization and Dysfunction$$x0
000892433 9141_ $$y2021
000892433 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-01-27
000892433 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-01-27
000892433 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2021-01-27
000892433 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2021-01-27
000892433 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-27
000892433 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bJ NUCL MED : 2019$$d2021-01-27
000892433 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2021-01-27
000892433 915__ $$0StatID:(DE-HGF)1110$$2StatID$$aDBCoverage$$bCurrent Contents - Clinical Medicine$$d2021-01-27
000892433 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-01-27
000892433 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000892433 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ NUCL MED : 2019$$d2021-01-27
000892433 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-27
000892433 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central$$d2021-01-27
000892433 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-01-27
000892433 920__ $$lyes
000892433 9201_ $$0I:(DE-Juel1)INM-3-20090406$$kINM-3$$lKognitive Neurowissenschaften$$x0
000892433 9201_ $$0I:(DE-Juel1)INM-2-20090406$$kINM-2$$lMolekulare Organisation des Gehirns$$x1
000892433 9201_ $$0I:(DE-Juel1)INM-5-20090406$$kINM-5$$lNuklearchemie$$x2
000892433 980__ $$ajournal
000892433 980__ $$aVDB
000892433 980__ $$aUNRESTRICTED
000892433 980__ $$aI:(DE-Juel1)INM-3-20090406
000892433 980__ $$aI:(DE-Juel1)INM-2-20090406
000892433 980__ $$aI:(DE-Juel1)INM-5-20090406
000892433 9801_ $$aFullTexts