| Hauptseite > Publikationsdatenbank > One-Stop Shop: 18 F-Flortaucipir PET Differentiates Amyloid-Positive and -Negative Forms of Neurodegenerative Diseases > print |
| 001 | 892433 | ||
| 005 | 20210623131804.0 | ||
| 024 | 7 | _ | |a 10.2967/jnumed.120.244061 |2 doi |
| 024 | 7 | _ | |a 0022-3123 |2 ISSN |
| 024 | 7 | _ | |a 0097-9058 |2 ISSN |
| 024 | 7 | _ | |a 0161-5505 |2 ISSN |
| 024 | 7 | _ | |a 1535-5667 |2 ISSN |
| 024 | 7 | _ | |a 2159-662X |2 ISSN |
| 024 | 7 | _ | |a 2128/27760 |2 Handle |
| 024 | 7 | _ | |a altmetric:85300338 |2 altmetric |
| 024 | 7 | _ | |a 32620704 |2 pmid |
| 024 | 7 | _ | |a WOS:000621322300018 |2 WOS |
| 037 | _ | _ | |a FZJ-2021-02079 |
| 041 | _ | _ | |a English |
| 082 | _ | _ | |a 610 |
| 100 | 1 | _ | |a Hammes, Jochen |0 P:(DE-Juel1)184744 |b 0 |e Corresponding author |u fzj |
| 245 | _ | _ | |a One-Stop Shop: 18 F-Flortaucipir PET Differentiates Amyloid-Positive and -Negative Forms of Neurodegenerative Diseases |
| 260 | _ | _ | |a New York, NY |c 2021 |b Soc. |
| 336 | 7 | _ | |a article |2 DRIVER |
| 336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
| 336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1620386693_3363 |2 PUB:(DE-HGF) |
| 336 | 7 | _ | |a ARTICLE |2 BibTeX |
| 336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
| 336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
| 520 | _ | _ | |a Tau protein aggregations are a hallmark of amyloid-associated Alzheimer disease and some forms of non–amyloid-associated frontotemporal lobar degeneration. In recent years, several tracers for in vivo tau imaging have been under evaluation. This study investigated the ability of 18F-flortaucipir PET not only to assess tau positivity but also to differentiate between amyloid-positive and -negative forms of neurodegeneration on the basis of different 18F-flortaucipir PET signatures. Methods: The 18F-flortaucipir PET data of 35 patients with amyloid-positive neurodegeneration, 19 patients with amyloid-negative neurodegeneration, and 17 healthy controls were included in a data-driven scaled subprofile model (SSM)/principal-component analysis (PCA) identifying spatial covariance patterns. SSM/PCA pattern expression strengths were tested for their ability to predict amyloid status in a receiver-operating-characteristic analysis and validated with a leave-one-out approach. Results: Pattern expression strengths predicted amyloid status with a sensitivity of 0.94 and a specificity of 0.83. A support vector machine classification based on pattern expression strengths in 2 different SSM/PCA components yielded a prediction accuracy of 98%. Anatomically, prediction performance was driven by parietooccipital gray matter in amyloid-positive patients versus predominant white matter binding in amyloid-negative patients. Conclusion: SSM/PCA-derived binding patterns of 18F-flortaucipir differentiate between amyloid-positive and -negative neurodegenerative diseases with high accuracy. 18F-flortaucipir PET alone may convey additional information equivalent to that from amyloid PET. Together with a perfusion-weighted early-phase acquisition (18F-FDG PET–equivalent), a single scan potentially contains comprehensive information on amyloid (A), tau (T), and neurodegeneration (N) status as required by recent biomarker classification algorithms (A/T/N). |
| 536 | _ | _ | |a 525 - Decoding Brain Organization and Dysfunction (POF4-525) |0 G:(DE-HGF)POF4-525 |c POF4-525 |x 0 |f POF IV |
| 588 | _ | _ | |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de |
| 700 | 1 | _ | |a Bischof, Gérard N. |0 P:(DE-Juel1)166265 |b 1 |u fzj |
| 700 | 1 | _ | |a Bohn, Karl P. |0 P:(DE-HGF)0 |b 2 |
| 700 | 1 | _ | |a Onur, Özgür |0 P:(DE-Juel1)131736 |b 3 |u fzj |
| 700 | 1 | _ | |a Schneider, Anja |0 P:(DE-HGF)0 |b 4 |
| 700 | 1 | _ | |a Fliessbach, Klaus |0 P:(DE-HGF)0 |b 5 |
| 700 | 1 | _ | |a Hönig, Merle C |0 P:(DE-Juel1)178642 |b 6 |u fzj |
| 700 | 1 | _ | |a Jessen, Frank |0 P:(DE-HGF)0 |b 7 |
| 700 | 1 | _ | |a Neumaier, Bernd |0 P:(DE-Juel1)166419 |b 8 |u fzj |
| 700 | 1 | _ | |a Drzezga, Alexander |0 P:(DE-Juel1)177611 |b 9 |u fzj |
| 700 | 1 | _ | |a van Eimeren, Thilo |0 P:(DE-Juel1)169110 |b 10 |
| 773 | _ | _ | |a 10.2967/jnumed.120.244061 |g Vol. 62, no. 2, p. 240 - 246 |0 PERI:(DE-600)2040222-3 |n 2 |p 240 - 246 |t Journal of nuclear medicine |v 62 |y 2021 |x 2159-662X |
| 856 | 4 | _ | |u https://juser.fz-juelich.de/record/892433/files/Hammes_2021_JNuclMed_Connectivity-related%20roles%20of...-1.pdf |
| 856 | 4 | _ | |y OpenAccess |u https://juser.fz-juelich.de/record/892433/files/jnumed.120.244061.full.pdf |
| 909 | C | O | |o oai:juser.fz-juelich.de:892433 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-Juel1)184744 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 1 |6 P:(DE-Juel1)166265 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 3 |6 P:(DE-Juel1)131736 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 6 |6 P:(DE-Juel1)178642 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 8 |6 P:(DE-Juel1)166419 |
| 910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 9 |6 P:(DE-Juel1)177611 |
| 913 | 0 | _ | |a DE-HGF |b Key Technologies |l Decoding the Human Brain |1 G:(DE-HGF)POF3-570 |0 G:(DE-HGF)POF3-572 |3 G:(DE-HGF)POF3 |2 G:(DE-HGF)POF3-500 |4 G:(DE-HGF)POF |v (Dys-)function and Plasticity |x 0 |
| 913 | 1 | _ | |a DE-HGF |b Key Technologies |l Natural, Artificial and Cognitive Information Processing |1 G:(DE-HGF)POF4-520 |0 G:(DE-HGF)POF4-525 |3 G:(DE-HGF)POF4 |2 G:(DE-HGF)POF4-500 |4 G:(DE-HGF)POF |v Decoding Brain Organization and Dysfunction |x 0 |
| 914 | 1 | _ | |y 2021 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |d 2021-01-27 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |d 2021-01-27 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1050 |2 StatID |b BIOSIS Previews |d 2021-01-27 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1190 |2 StatID |b Biological Abstracts |d 2021-01-27 |
| 915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0113 |2 StatID |b Science Citation Index Expanded |d 2021-01-27 |
| 915 | _ | _ | |a IF >= 5 |0 StatID:(DE-HGF)9905 |2 StatID |b J NUCL MED : 2019 |d 2021-01-27 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1030 |2 StatID |b Current Contents - Life Sciences |d 2021-01-27 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1110 |2 StatID |b Current Contents - Clinical Medicine |d 2021-01-27 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |d 2021-01-27 |
| 915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
| 915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b J NUCL MED : 2019 |d 2021-01-27 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0160 |2 StatID |b Essential Science Indicators |d 2021-01-27 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0320 |2 StatID |b PubMed Central |d 2021-01-27 |
| 915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Clarivate Analytics Master Journal List |d 2021-01-27 |
| 920 | _ | _ | |l yes |
| 920 | 1 | _ | |0 I:(DE-Juel1)INM-3-20090406 |k INM-3 |l Kognitive Neurowissenschaften |x 0 |
| 920 | 1 | _ | |0 I:(DE-Juel1)INM-2-20090406 |k INM-2 |l Molekulare Organisation des Gehirns |x 1 |
| 920 | 1 | _ | |0 I:(DE-Juel1)INM-5-20090406 |k INM-5 |l Nuklearchemie |x 2 |
| 980 | _ | _ | |a journal |
| 980 | _ | _ | |a VDB |
| 980 | _ | _ | |a UNRESTRICTED |
| 980 | _ | _ | |a I:(DE-Juel1)INM-3-20090406 |
| 980 | _ | _ | |a I:(DE-Juel1)INM-2-20090406 |
| 980 | _ | _ | |a I:(DE-Juel1)INM-5-20090406 |
| 980 | 1 | _ | |a FullTexts |
| Library | Collection | CLSMajor | CLSMinor | Language | Author |
|---|