000892445 001__ 892445
000892445 005__ 20240711114119.0
000892445 0247_ $$2doi$$a10.1585/pfr.16.2403004
000892445 0247_ $$2Handle$$a2128/27762
000892445 0247_ $$2WOS$$aWOS:000672705100030
000892445 037__ $$aFZJ-2021-02083
000892445 082__ $$a530
000892445 1001_ $$0P:(DE-HGF)0$$aSHOJI, Mamoru$$b0
000892445 245__ $$aSimulation of Impurity Transport and Deposition in the Closed Helical Divertor in the Large Helical Device
000892445 260__ $$aNagoya$$bSoc.$$c2021
000892445 3367_ $$2DRIVER$$aarticle
000892445 3367_ $$2DataCite$$aOutput Types/Journal article
000892445 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1620632135_31784
000892445 3367_ $$2BibTeX$$aARTICLE
000892445 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000892445 3367_ $$00$$2EndNote$$aJournal Article
000892445 520__ $$aLong pulse discharges in the Large Helical Device have often been interrupted by large amounts of dust particle emission from the divertor region caused by the exfoliation of carbon-rich mixed material deposition layers. The plasma wall interaction code ERO2.0 has provided the simulation results of the three-dimensional distribution of the carbon flux density in the divertor region which is quite reasonable with the observed distribution of the carbon-rich deposition layers. The code has also succeeded in reproducing the reduction of the carbon deposition layers on dome plates by changing the target plate configuration in the divertor region. The ERO2.0 simulations have also successfully explained dust particle emission from the inboard side near the equatorial plane for the new target plate configuration at the termination of a long pulse discharge. These simulation results prove that the ERO2.0 code is applicable to predicting the possible position from where the dust particles are released, and to designing an optimized divertor configuration for performing stable long pulse discharges with controlled dust particle emission.
000892445 536__ $$0G:(DE-HGF)POF4-134$$a134 - Plasma-Wand-Wechselwirkung (POF4-134)$$cPOF4-134$$fPOF IV$$x0
000892445 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000892445 7001_ $$0P:(DE-Juel1)177846$$aKAWAMURA, Gakushi$$b1$$eCorresponding author
000892445 7001_ $$0P:(DE-Juel1)165905$$aROMAZANOV, Juri$$b2
000892445 7001_ $$0P:(DE-Juel1)2620$$aKIRSCHNER, Andreas$$b3
000892445 7001_ $$0P:(DE-Juel1)171509$$aEksaeva, Alina$$b4$$ufzj
000892445 7001_ $$0P:(DE-Juel1)7884$$aBORODIN, Dmitry$$b5
000892445 7001_ $$0P:(DE-HGF)0$$aMASUZAKI, Suguru$$b6
000892445 7001_ $$0P:(DE-Juel1)129976$$aBREZINSEK, Sebastijan$$b7
000892445 773__ $$0PERI:(DE-600)2397085-6$$a10.1585/pfr.16.2403004$$gVol. 16, no. 0, p. 2403004 - 2403004$$n0$$p2403004 $$tPlasma and fusion research$$v16$$x1880-6821$$y2021
000892445 8564_ $$uhttps://juser.fz-juelich.de/record/892445/files/16_2403004.pdf$$yOpenAccess
000892445 8564_ $$uhttps://juser.fz-juelich.de/record/892445/files/Postprint_Romanov_Simulation%20of%20Impurity%20Transport%20and%20Deposition.pdf$$yOpenAccess
000892445 909CO $$ooai:juser.fz-juelich.de:892445$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000892445 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)177846$$aForschungszentrum Jülich$$b1$$kFZJ
000892445 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)165905$$aForschungszentrum Jülich$$b2$$kFZJ
000892445 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)2620$$aForschungszentrum Jülich$$b3$$kFZJ
000892445 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171509$$aForschungszentrum Jülich$$b4$$kFZJ
000892445 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)7884$$aForschungszentrum Jülich$$b5$$kFZJ
000892445 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129976$$aForschungszentrum Jülich$$b7$$kFZJ
000892445 9130_ $$0G:(DE-HGF)POF3-174$$1G:(DE-HGF)POF3-170$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lKernfusion$$vPlasma-Wall-Interaction$$x0
000892445 9131_ $$0G:(DE-HGF)POF4-134$$1G:(DE-HGF)POF4-130$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Energie$$lFusion$$vPlasma-Wand-Wechselwirkung$$x0
000892445 9141_ $$y2021
000892445 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-09-29
000892445 915__ $$0StatID:(DE-HGF)0112$$2StatID$$aWoS$$bEmerging Sources Citation Index$$d2020-09-29
000892445 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-09-29
000892445 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000892445 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-09-29
000892445 920__ $$lyes
000892445 9201_ $$0I:(DE-Juel1)IEK-4-20101013$$kIEK-4$$lPlasmaphysik$$x0
000892445 9801_ $$aFullTexts
000892445 980__ $$ajournal
000892445 980__ $$aVDB
000892445 980__ $$aUNRESTRICTED
000892445 980__ $$aI:(DE-Juel1)IEK-4-20101013
000892445 981__ $$aI:(DE-Juel1)IFN-1-20101013