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ABSTRACT: Background: Cerebrospinal fluid
(CSF) levels of monoamine metabolites may represent
biomarkers of Parkinson’s disease (PD).

Objective: The aim of this study was quantification of
multiple metabolites in CSF from PD versus healthy
control subjects (HCs), including longitudinal analysis.
Methods: Absolute levels of multiple monoamine
metabolites in CSF were quantified by liquid chroma-
tography coupled with tandem mass spectrometry
from 161 individuals with early PD and 115 HCs from
the Parkinson’s Progression Marker Initiative and de
novo PD (DeNoPA) studies.

Results: Baseline levels of homovanillic acid (HVA)

r CSF NEUROTRANSMITTER METABOLITES IN PD

lower in individuals with PD compared with HCs. HVA
levels correlated with Movement Disorder Society Uni-
fied Parkinson’s Disease Rating Scale total scores
(P <0.01). Both HVA/dopamine and DOPAC/dopa-
mine levels correlated with caudate nucleus and raw
DOPAC with putamen dopamine transporter single-
photon emission computed tomography uptake ratios
(P <0.01). No metabolite changed over 2 years in
drug-naive individuals, but some changed on starting
levodopa treatment.

Conclusions: HVA and DOPAC CSF levels mirrored
nigrostriatal pathway damage, confirming the
central role of dopaminergic degeneration in
early PD. © 2021 The Authors. Movement Disor-
ders published by Wiley Periodicals LLC on behalf
of International Parkinson and Movement Disorder
Society

Key Words: monoamine metabolites; catecholamine;
neurotransmitter; biomarker; Parkinson’s disease;
CSF; homovanillic acid

and 3,4-dihydroxyphenylacetic acid (DOPAC) were

- /

Parkinson’s disease (PD) is characterized by progres-
sive loss of dopaminergic neurons in the substantia
nigra pars compacta,' but also depletion of other neu-
rotransmitters, such as serotonin in the striatum and
noradrenaline in the hypothalamus and frontal cor-
tex.”> Cerebrospinal fluid (CSF) represents the most
proximal source of molecular biomarkers for these defi-
ciencies.* Although quantification of CSF protein bio-
markers improves early diagnosis in Alzheimer’s
disease,” no analogous protein biomarkers for PD diag-
nosis exist. Neurotransmitter metabolites represent a
potential proxy to PD-specific neurodegeneration and
may serve as promising biomarkers of disease severity
and its progression.

Several studies investigating dopamine metabolites
in PD found consistent signatures, in particular,
decreased levels of the main dopamine metabolite
homovanillic acid (HVA).'° However, their utility
for monitoring disease progression has been
questioned, mainly because of the results of the
DATATOP (deprenyl and tocopherol antioxidative
therapy of parkinsonism) study in which repeated CSF
measurements of dopamine metabolites by gas
chromatography-mass spectrometry yielded variable
results. Despite efforts to standardize CSF collection,
processing, and measurement,'*'* potential con-
founding factors on catecholamine levels remain (eg,
diurnal changes, total CSF volume) and may impede
the reliable quantification.'*"'®

Although high-performance liquid chromatography
with electrochemical detection (HPLC-ECD) and gas
chromatography—mass ~ spectrometry ~ were  previously
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considered gold standards for analyzing dopamine and its
metabolites,”'!  LC-MS/MS  (liquid  chromatography
coupled with tandem mass spectrometry) has evolved during
the last two decades with comparable sensitivity to HPLC-
ECD and greatly improved selectivity.'”'® LC-MS/MS
reduces the complexity of preanalytical processing'” and is
now considered the gold standard for quantitative analytics.
This enables simultaneous analyses of metabolites of the
dopaminergic (eg, 3,4-dihydroxyphenylalanine [DOPA],
dopamine, 3,4-dihydroxyphenylacetic acid [DOPAC]),
noradrenergic (eg, 3,4-dihydroxyphenylglycol, 4-hydroxy-
3-methoxyphenylglycol) and serotonergic (eg, 5-hydroxy-
3-indoleacetic acid [5-HIAA]) pathways in biofluids,
including CSF."

We for the first time applied LC-MS/MS to measure
multiple monoamine metabolite concentrations in
human CSF samples from the single-center de novo PD
(DeNoPa)-cohort,?>*! including longitudinal analy-
sis in the multicenter Parkinson’s Progressive
Markers Initiative (PPMI)*** study, to assess their
utility as biomarkers of both PD severity and its
progression.

KREMER

Materials and Methods

Study Participants and CSF Sampling
Procedure
DeNoPa Cohort

CSF baseline samples from 49 age- and sex-matched
healthy control subjects (HC) and 62 drug-naive PD
participants were analyzed from the DeNoPa study.?’

CSF samples were collected and processed as previously
described.”

PPMI Cohort

Baseline and 1-year CSF samples from 56 HCs and
95 age-, sex-, body mass index (BMI)-, and total CSF
volume-matched participants with dopamine trans-
porter single-photon emission computed tomography
(DaT-SPECT)-confirmed PD were analyzed (https:/
www.ppmi-info.org/study-design/). Fifty-four individ-
uals with PD remained unmedicated at the 1-year visit,
while 39 individuals with PD had started L-dopa medi-
cation. Two-year follow-up CSF samples were avail-
able from all 56 HCs and 39 individuals with PD,
all of whom were on L-dopa medication. Clinical
and medication data were retrieved from the PPMI
data portal (https://www.ppmi-info.org/access-data-
specimens/download-data/). CSF samples were col-
lected and processed following standardized proce-
dures (https://www.ppmi-info.org/study-design/) (see
also The Parkinson’s Progression Marker Initiative**
and Kang?®).

A comparison of CSF sampling procedures for
DeNoPa and PPMI is provided in Table S4.

Demographics and clinical characteristics for DeNoPa
and PPMI are provided in Table S1. Both studies were
approved by the ethics committees: in Frankfurt
(Hessen, Germany) for DeNoPa and the Institutional
Review Board of all participating sites for PPMI. Writ-
ten informed consent was obtained from all partici-
pants before inclusion in the study.

Metabolite Quantification

Absolute metabolite quantification was performed at
Metanomics Health GmbH, Germany. CSF samples
were subjected to ultracentrifugation and dansyl chlo-
ride derivatization prior to solid-phase extraction and
LC-MS/MS analysis: data were normalized against
internal standards and quantified using calibration stan-
dards as previously described.'”?” The metabolite
panels that were analyzed, including their limit of detec-
tion, are provided in Table S2. Technical robustness of
the analytical method was confirmed in a subset of
seven CSF randomly selected blinded samples from the
DeNoPa study (see Table S3). Ratios were derived for
analyses of metabolite levels normalized by the concen-
tration of the respective neurotransmitter. Stringent
procedures to minimize time between thawing and
monoamine metabolite analysis were consistently
applied for all samples.

Statistical Analysis

All statistical analyses were performed using R and
are described in detail in the Supporting Data.

Results

Demographic and Clinical Data in the DeNoPa
and PPMI Cohorts

Groups did not differ with respect to mean age (=
standard deviation) (HC: 65.6 = 6.6, PD: 64.1 = 9.4,
F = 1.2, P = 0.28) or sex distribution (HCs [male/
female]: 30/19, PD: 42/20, y* = 0.51, P = 0.47) in the
DeNoPa study. Groups differed with respect to Move-
ment Disorder Society Unified Parkinson’s Disease Rat-
ing Scale (MDS UPDRS) Part III (HC: 0.35 = 1.03, PD:
194 9.9, F = 386, P <0.001) and total scores (HC:
3.1 +£2.8,PD:29.8 +15.6, F =290, P < 0.001).

Groups had comparable baseline ages
(mean = standard deviation) (HC: 62.7 = 10.7, PD:
62.4 9.8, F =0.21, P = 0.65), sex distributions (HCs
[male/female]: 40/16, PD: 64/31, y* = 0.27, P = 0.6),
BMI (HC: 26.8+5.2, PD: 26.7+4.2, F = 0.06,
P = 0.95), and total CSF volume (HC: 17.8 + 3.1, PD:
16.9 £2.9, F = 1.9, P = 0.15) but differed with respect
to MDS UPDRS Part III (HC: 1.2+2.0, PD:
21.1 £ 8.5, F = 346, P < 0.001) and total scores (HC:
4.7 + 4.0, PD: 33.4 = 13.5, F = 318, P < 0.001) in the
PPMI study (see Table S1).
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Quantifiable Metabolites

Overall, 8 of 17 metabolites could be quantified in
the DeNoPa and 12 of 17 in the PPMI samples, and
they were considered in further analyses. The upper
levels of detection were reached in some PPMI PD sam-
ples for 3-methoxytyrosine (25%) and DOPA (13%).

CSF Monoamine Metabolite Levels at Baseline

Given that dopamine levels in the DeNoPa cohort
were mostly below the limit of detection for multiple
samples, only nonratio metabolite and neurotransmit-
ter levels were analyzed. Four metabolites differed
between DeNoPa PD and HC groups: HVA (esti-
mate = —0.41 = 0.10, P < 0.0001, effect size = 0.13), 5-
HIAA (estimate = —0.32=0.10, P = 0.002, effect
size = 0.08), 4-hydroxy-3-methoxyphenylglycol (esti-
mate = —0.12 = 0.04, P = 0.008, effect size = 0.05), and
DOPAC (estimate = —0.25+0.09, P = 0.06, effect
size = 0.04) (see Table S3).

The DeNoPa findings were partially confirmed in the
PPMI samples, in which HVA and DOPAC raw and
normalized levels differed between HC and PD groups
(HVA: estimate = —0.33 +0.07, P <0.0001, effect
size = 0.15; DOPAC: estimate = 0.2 = 0.07, P = 0.01,
effect size = 0.06) (see Table 1 and Fig. 1; ROC curves
are provided in Fig. S1).

In the PPMI cohort, dopamine could be reliably
quantified in >97% of the samples, which was
supported by test—retest analysis for a subset of samples
(see Table S3) and allowed analyses of metabolite
ratios. PD CSF levels of HVA correlated with MDS
UPDRS total scores (r = —-0.26, P <0.01). Both
HVA/dopamine and DOPAC/dopamine correlated with
DaT-SPECT uptake ratios of the mean caudate (both
ratios: r = 0.28; P <0.01) and ipsilateral caudate
nucleus (both ratios: r = 0.29, P <0.01), while raw
DOPAC levels correlated with ipsilateral and mean
putamen DaT-SPECT uptake ratios (r = 0.27 and
r = 0.28, respectively, both P < 0.01; see Fig. S2).

Long-Term Within-Subject Stability

Within-subject signal stability in longitudinal analyses
was assessed by calculating the intraclass correlation
coefficient (ICC) for the PPMI HCs at baseline, year
1, and year 2 test values. ICCs ranged from 0.19 (for
histamine) to 0.74 (for HIAA), with a median of 0.69
(see Table 1).

Change of Catecholamine Metabolite Levels
over Time
No raw or normalized metabolite level changed sig-

nificantly over 1 year in unmedicated PPMI PD patients
(all P> 0.05). Dopaminergic medication affected the

r CSF NEUROTRANSMITTER METABOLITES IN PD

levels of DOPA, methoxytyrosine, dopamine, and their
respective metabolite ratios (see Fig. S3).

Discussion

This study measured absolute quantities of multiple
monoamine metabolites in longitudinal CSF samples
from individuals with early PD in the presence and
absence of dopaminergic medication.

Various cross-sectional studies on CSF monoamine
metabolites in individuals with PD have been per-
formed.®1%*3% However, longitudinal analyses were
lacking because the large multicenter DATATOP trial
reported no difference in CSF HVA and DOPAC in early
PD and during disease progression.””'! Longitudinal ana-
lyses suffered from high intrapatient variability.'! We
hypothesized that multiple factors, such as preanalytical
sample processing, site-to-site variability,>' and misdiag-
noses in PD,** may have affected the results. Also, the
complex analytical method applied may add to the
observed variability.'* This study aimed to address these
factors with a robust single-center recruitment (DeNoPa
cohort), DaT-SPECT confirmation of diagnoses in most
DeNoPa and all PPMI subjects, and clinical follow-up
and LC-MS/MS method for absolute quantification of
metabolites.'”"”

CSF levels of DOPAC and HVA, the end product of
dopamine metabolism, were reduced in early PD, con-
firming previous cross-sectional studies.®'%*%%? Corre-
lations observed for dopaminergic metabolites with
MDS UPDRS total scores and DaT-SPECT uptake
values support that nigrostriatal neurodegeneration is
relevant to early PD and that deficiencies are reflected
in CSF.

CSF procedures applied in both studies relied on con-
sensus guidelines and are not necessarily optimized for
a given metabolite.>® Thus, absolute values obtained in
this study may be affected by ex vivo changes and
should be interpreted accordingly. Despite this limita-
tion, the comparably low intrapatient signal variability
for a subset of metabolites in longitudinal HC samples
is encouraging and supports the future use of this assay
in longitudinal studies.

The utility of CSF neurotransmitter metabolite levels
to identify prodromal PD or differentiate PD from
atypical parkinsonian syndromes remain open ques-
tions. Encouraging results from a small prospective
cohort study support analysis of CSF monoamine
metabolites in prodromal cohorts to identify people
who will develop clinical PD.** Given the proximity of
this biomarker panel to the underlying disease pathol-
ogy, as supported by the present DaT-SPECT results,
it may also identify PD subtypes with diverging neuro-
transmitter systems deficiencies. Although the present
longitudinal data span a relatively short time frame,
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FIG. 1. Baseline levels of (A) homovanillic acid (HVA) and 3,4-dihydroxyphenylacetic acid (DOPAC) and (B) HVA/dopamine and DOPAC/dopamine in
healthy control (HC; blue) and Parkinson’s disease (PD; orange) Parkinson’s Progressive Markers Initiative participants. CSF, cerebrospinal fluid. [Color

figure can be viewed at wileyonlinelibrary.com]

clinical follow-up of the PPMI continued since our
analysis was performed, and additional information on
clinical scales and for various biomarker modalities is
available, including their progression with time. We
encourage researchers to use our data, which are
accessible for downloading, to further deepen our
understanding of PD  pathophysiology and its
progression. @
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