001     892464
005     20230215201830.0
024 7 _ |a 10.1016/j.proci.2020.06.022
|2 doi
024 7 _ |a 1540-7489
|2 ISSN
024 7 _ |a 1873-2704
|2 ISSN
024 7 _ |a 2128/30393
|2 Handle
024 7 _ |a WOS:000651837700001
|2 WOS
037 _ _ |a FZJ-2021-02100
082 _ _ |a 660
100 1 _ |a Bode, Mathis
|0 P:(DE-Juel1)192255
|b 0
|e Corresponding author
|u fzj
245 _ _ |a Using physics-informed enhanced super-resolution generative adversarial networks for subfilter modeling in turbulent reactive flows
260 _ _ |a New York, NY [u.a.]
|c 2021
|b Elsevier ScienceDirect
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1676461515_10240
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
536 _ _ |a 5112 - Cross-Domain Algorithms, Tools, Methods Labs (ATMLs) and Research Groups (POF4-511)
|0 G:(DE-HGF)POF4-5112
|c POF4-511
|f POF IV
|x 0
536 _ _ |a Using deep learning to predict statistics of turbulent flows at high Reynolds numbers (jhpc55_20190501)
|0 G:(DE-Juel1)jhpc55_20190501
|c jhpc55_20190501
|f Using deep learning to predict statistics of turbulent flows at high Reynolds numbers
|x 1
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Gauding, Michael
|0 0000-0003-0038-5249
|b 1
700 1 _ |a Lian, Zeyu
|0 0000-0001-6944-015X
|b 2
700 1 _ |a Denker, Dominik
|0 0000-0002-7936-8574
|b 3
700 1 _ |a Davidovic, Marco
|0 0000-0002-6213-080X
|b 4
700 1 _ |a Kleinheinz, Konstantin
|b 5
700 1 _ |a Jitsev, Jenia
|0 P:(DE-Juel1)158080
|b 6
|u fzj
700 1 _ |a Pitsch, Heinz
|0 0000-0001-5656-0961
|b 7
773 _ _ |a 10.1016/j.proci.2020.06.022
|g Vol. 38, no. 2, p. 2617 - 2625
|0 PERI:(DE-600)2197968-6
|n 2
|p 2617 - 2625
|t Proceedings of the Combustion Institute
|v 38
|y 2021
|x 1540-7489
856 4 _ |u https://juser.fz-juelich.de/record/892464/files/1-s2.0-S1540748920300481-main.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:892464
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
|q extern4vita
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)192255
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)158080
913 1 _ |a DE-HGF
|b Key Technologies
|l Engineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action
|1 G:(DE-HGF)POF4-510
|0 G:(DE-HGF)POF4-511
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Enabling Computational- & Data-Intensive Science and Engineering
|9 G:(DE-HGF)POF4-5112
|x 0
914 1 _ |y 2021
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2021-01-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2021-01-27
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2021-01-27
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-01-27
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-01-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2021-01-27
920 _ _ |l yes
920 1 _ |0 I:(DE-82)080012_20140620
|k JARA-HPC
|l JARA - HPC
|x 0
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-82)080012_20140620
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 _ _ |a UNRESTRICTED
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21