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Abstract 

Turbulence is still one of the main challenges in accurate prediction of reactive flows. Therefore, the develop- 
ment of new turbulence closures that can be applied to combustion problems is essential. Over the last few 

years, data-driven modeling has become popular in many fields as large, often extensively labeled datasets are 
now available and training of large neural networks has become possible on graphics processing units (GPUs) 
that speed up the learning process tremendously. However, the successful application of deep neural networks 
in fluid dynamics, such as in subfilter modeling in the context of large-eddy simulations (LESs), is still chal- 
lenging. Reasons for this are the large number of degrees of freedom in natural flows, high requirements 
of accuracy and error robustness, and open questions, for example, regarding the generalization capability 
of trained neural networks in such high-dimensional, physics-constrained scenarios. This work presents a 
novel subfilter modeling approach based on a generative adversarial network (GAN), which is trained with 

unsupervised deep learning (DL) using adversarial and physics-informed losses. A two-step training method 

is employed to improve the generalization capability, especially extrapolation, of the network. The novel 
approach gives good results in a priori and a posteriori tests with decaying turbulence including turbulent 
mixing, and the importance of the physics-informed continuity loss term is demonstrated. The applicability 
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of the network in complex combustion scenarios is furth  

inert LESs of the Spray A case defined by the Engine Co
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. Introduction 

Machine learning (ML) and deep learning (DL)
ave gained widespread use and have impacted
any research communities and industries. The

vailability of exceptionally large, often extensively
abeled datasets and the possibility to train large
etworks on graphics processing units (GPUs),
educing the training time tremendously, are two
easons for this success. Prominent applications of 
L include image processing [1–3] , speech recogni-

ion [4] , or learning of optimal complex control [5] .
hese data-driven approaches have also been ap-
lied to fluid dynamics problems [6–10] , including
orks on subfilter modeling for large-eddy sim-
lation (LES) [11–13] based on direct numerical
imulation (DNS) data. Recently, the idea of 
hysics-informed networks [14] has emerged,
here architecture or loss functions are designed

o support known properties of underlying physical
roblems. 

Neural networks have also been applied suc-
essfully to reactive flows. Some examples are the
daptive reduction scheme for modeling reactive
ows by Banerjee et al. [15] , artificial neural net-
ork (ANN)-based storage of flamelet solutions

16,17] , and direct mapping of LES resolved scales
o filtered-flame generated manifolds using cus-
omized convolutional neural networks (CNNs), as
hown by Seltz et al. [18] . Additionally, regularized
econvolution methods, such as those published by
ang and Ihme [19] , are closely related ideas. 
Often, the applications regarding flow data are

imited owing to the use of either simple networks
r small, artificial datasets. Thus, many questions
till remain open, such as the determination of 
roper network architectures for flow problems,
earch for hyperparameters, or improvement of the
eneralization ability of networks. 

This work introduces the application of gener-
tive adversarial networks (GANs) [20] for subfil-
er modeling of turbulent flows, as GANs seems
o be a flexible tool that are also promising for re-
ctive turbulent flow simulations. GANs belong to
 particular class of generative models that aim
o estimate the unknown probability density un-
erlying any observed data. The specific character-

stic of this model class is the ability to perform
ermore discussed by employing it in reactive and
mbustion Network (ECN). 
 of The Combustion Institute. 
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such estimation without an explicitly provided data
likelihood function. The learning takes place via
an implicit generative model and only requires ac-
cess to data samples from the unknown distribu-
tion. Thus, GANs perform unsupervised learning
of unknown data probability distributions and do
not require any labels that are necessary in super-
vised learning scenarios. Simply put, the particu-
larly interesting feature of GANs is that besides a
resulting generator network for modeling, a second
network, the discriminator, is also used. While the
generator creates new modeled data, the discrim-
inator tries to assess if the data is real or gener-
ated and provides feedback to train the generator.
Thereby, the discriminator learns better discrimi-
nation of real and modeled data, which helps the
generator to generate more accurate modeled data.
Precisely, estimating an unknown data probability
distribution by GAN learning can be understood as
a minimax zero-sum game carried out by two play-
ers, the generator and the discriminator, that are
both deep networks constituting a full GAN. In this
game, a generator creates samples to present them
to the discriminator, while the discriminator, being
confronted with a mix of generated and real data
samples, has the task of guessing whether a pre-
sented input is generated or real data. So, the gen-
erator attempts to “fool” the discriminator, while
the discriminator strives to better differentiate gen-
erated samples from real samples. It was shown that
finding the equilibrium of this game corresponds
to minimizing different distance measures between
the generator model and the true data distribu-
tion [20] , such as Kullback-Leibler (KL), Jensen-
Shannon (JS) divergence, or Wasserstein distance,
depending on a particular form of loss termed as
adversarial loss. 

Here, a physics-informed enhanced super-
resolution GAN (PIESRGAN) is employed, built
upon enhanced super-resolution GAN (ESRGAN)
[2] architecture, which has been recently developed
in the context of super-resolving GANs (SRGANs)
[21] , to reconstruct fully resolved turbulence fields
from filtered data, such as from LES. To this end,
the ESRGAN is extended for three-dimensional
(3-D) data handling and, most importantly, en-
dowed with physics-informed loss. Once the fully
resolved data is reconstructed, a filter kernel is

http://creativecommons.org/licenses/by/4.0/
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applied to close the filtered equations of the LES.
In this work, Section 2 describes the PIESRGAN
in detail and explains the network’s key features
that are required for an accurate reconstruction.
It contains both a priori and a posteriori tests
with decaying turbulence data including turbulent
mixing of a passive scalar, which could represent
the mixture fraction in any combustion model.
Furthermore, an approach to improve the train-
ing and generalization capability, especially for
extrapolation, of the trained neural network by
combining fully resolved and underresolved data is
discussed. In Section 3 , the potential of the novel
method is demonstrated by using PIESRGAN
as a subfilter model for the filtered momentum
and scalar equations in an LES of the Spray A
case defined by the Engine Combustion Network
(ECN) [22] , which is a complex reactive turbu-
lent flow featuring high Reynolds numbers and
spray. The paper finishes with conclusions and
recommendations for future work. 

2. Modeling 

A subfilter model needs to predict the subfilter
statistics of fully resolved data (e. g., DNS data;
denoted with “H”), knowing only the correspond-
ing filtered data with reduced information content
(e. g., LES data; denoted with “F”). Here, the
fully resolved data �H 

and the filtered data �F are
connected by a filter operation �F = F (�H 

) , for
example, with a Gaussian filter kernel. The filtered
equations, which are solved in LES, could be closed
if the fully resolved data is reconstructed with an
inverse filter operation �H 

= F 

−1 (�F ) that statis-
tically restores the original fully resolved data [13] .

The described challenges of subfilter models
are similar to challenges faced in super-resolution
imaging. Here, SRGANs have been found to be a
successful tool for approximating the inverse de-
convolution operator �R 

= 

˜ F 

−1 (�F ) ≈ F 

−1 (�F )
[2,21] , where �R 

denotes the reconstructed, high-
resolution data. Thus, PIESRGAN is used as
approximation 

˜ F 

−1 . For example, if φn 
F denotes

a discretized filtered solution at time step n, the
resulting simulation workflow for closing unclosed
terms ψ 

n 
F , such as subfilter contribution terms or

chemical source terms, is as follows: 

1. Use the PIESRGAN to reconstruct φn 
R 

from
φn 

F . 
2. Use φn 

R 

to estimate the unclosed terms ψ 

n 
F in

the filtered transport equation of φ by evalu-
ating the local terms with φn 

R 

and applying a
filter operator. 

3. Use ψ 

n 
F and φn 

F to advance the filtered trans-
port equation of φ to φn +1 

F . 
4. Repeat steps 1–3. 
2.1. Network architecture 

A diagram of the PIESRGAN is depicted in 

Fig. 1 . The generator is fed with 3-D sub-boxes 
of the flow fields during training and heavily uses 
3-D CNN layers (Conv3D) [23] in combination 

with leaky rectified linear unit (LeakyReLU) lay- 
ers for activation. The convolutional layers can ex- 
tract increasingly complex multi-dimensional fea- 
tures with increasing network depth. LeakyReLU 

activation has the advantage of higher computa- 
tional efficiency and better gradient propagation 

avoiding vanishing or exploding values; moreover, 
it introduces the leaky term on the negative input 
side, which prevents the so-called dead unit issue 
that affects standard rectified linear units (ReLUs) 
[24] . 

The residual in residual dense block (RRDB), 
which is introduced in ESRGAN and replaces 
the residual block (RB) used in previous architec- 
tures, is essential for the performance of state-of- 
the-art SRGANs. The RRDB contains fundamen- 
tal architectural elements such as residual dense 
blocks (RDBs) with skip-connections, where each 

RDB uses dense connections inside in turn. The 
output from each layer within the dense block (DB) 
is sent to all the following layers. For PIESRGAN, 
RDBs are repeated multiple times using residual 
skip connections with the residual scaling factor 
βRSF ; this helps avoid instabilities in the forward 

and backward propagation by downscaling the 
residuals before additions. The motivation behind 

the RRDB architecture is to enable the generation 

of super-resolved data through a very deep network 

that is capable of learning and modeling all rele- 
vant complex transformations necessary to specify 
the required reconstruction operation. 

As suggested by Wang et al. [2] , all batch nor- 
malization (BN) layers of the ESRGAN architec- 
ture were deactivated for the spray application of 
PIESRGAN in this work. This reduces the com- 
putational cost bound to BN and was shown to 

improve performance compared with former single 
image super-resolution (SISR) models that utilized 

BN [25] . Furthermore, the use of BN layers can in- 
troduce distorting artifacts into generated images 
[2] , which is absolutely undesirable in turbulence 
modeling, and it was found that it is not neces- 
sary for the spray application case considered in 

this work. 
Another difference between PIESRGAN and 

traditional SISR applications lies in the input and 

output dimensions. In SISR, a generated high- 
resolution image contains an increased number of 
pixels, while the fully resolved data in turbulence 
contain finer structures that are enclosed in the 
flow. Therefore, turbulence super-resolution does 
not involve classical upsampling or downsampling. 
The input and output hold the same dimensions, 
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Fig. 1. Diagram of the PIESRGAN architecture. 
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ut the output flow has more energy distributed in
he high wavenumber range. 

The discriminator inherits the basic CNN ar-
hitecture, as also shown in Fig. 1 . It consists of 
ne Conv3d block without BN and seven Conv3d
locks with BN, followed by a fully connected

ayer block with dropout. LeakyReLu layers are
sed for activation. The blocks close to the in-
ut learn relatively simple features extracted from
urbulent flows, whereas the blocks close to the
utput learn more complex, high-level features,

ike eddies/vortexes. The number of filter maps in-
reases with depth following conventional design.
he dense layer block starts with a dense layer

Dense), which projects highly dimensional output
rom many filter maps of the final Conv3d block
nto a flat 1024 dimensional vector. The following
ropout layer serves as regularization, reducing the
isk of overfitting by ignoring network units during
raining with the probability βdropout . A relativistic
dversarial loss proposed by Jolicoeur-Martineau
26] is employed. Using relativistic loss as adversar-
al loss was shown to stabilize GAN training in dif-
erent scenarios [26] . It also presumably aids learn-
ng of sharper edges and more detailed textures in
ISR cases, which should also help to learn very
igh-frequency details in the turbulence context. 

The perceptual loss proposed for the ESRGAN
ased on the VGG-feature space pre-trained with
he ImageNet dataset is less suitable for turbulence
ata, as the natural image features from VGG19
ay be not representative of turbulent flows. In-

tead, physics-informed constraints are incorpo-
ated into the loss function, guided by laws govern-
ng the physics of turbulence. More precisely, the
oss function for PIESRGAN is chosen as 

 = β1 L adversarial + β2 L pixel + β3 L gradient + β4 L continuity , 

(1)

here β1 , β2 , β3 , and β4 are coefficients weighting
he different loss term contributions; in this work,
hese coefficients were always equally scaled such
hat the sum of all non-zero weighting coefficients
emained equal to one. Note that all loss terms
are non-dimensional, since all operators and input
fields used are non-dimensionalized, as explained
later. L adversarial is the discriminator/generator
relativistic adversarial loss [2] , which reflects
both how well the generator is able to generate
high-resolution turbulence samples that look like
real, DNS-obtained fully resolved turbulence
flows and how well the discriminator is able to
distinguish between real and generated flows. The
pixel loss L pixel and the gradient loss L gradient are
defined as the mean-squared error (MSE) of the
quantity itself and of the gradient of the quantity,
respectively [12] . If the MSE operator is applied
on tensors, including vectors such as the velocity, it
is applied to all components separately. Afterward,
the resulting tensor is mapped into a scalar using
the L 1 -norm. L continuity is the physics-informed
continuity loss enforcing physically plausible so-
lutions of the reconstructed flow field in which
the divergence of the velocity field should be zero
for incompressible flows. If no reference solution
exists, β2 and β3 are set to zero, reducing the loss
to adversarial loss and potential continuity loss. 

2.2. Implementation details 

All networks were trained using cropped sub-
boxes with size 16 × 16 × 16 from DNS and the
corresponding filtered low-resolution flow fields.
This box size was found to be a good compromise
between memory requirement during the recon-
struction step and the characteristic length scales
of the flow and filter width. To map a passive scalar
field combined with the velocity field, each batch
with batch size 32, which is the number of sam-
ples processed before the model is updated, had the
dimension 32 × 16 × 16 × 16 × 4 , comprising one
passive scalar channel and three velocity channels.
The flow field at a given time step was divided into
non-overlapping sub-boxes, which were all used for
training in one epoch and accessed in random or-
der. Based on the estimation of degrees of freedom
in each sub-box compared to the number of de-
grees of freedom in 2-D images, 80 and 28 layers
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Fig. 2. Visualization of 2-D slices of the dimensionless passive scalar z ∗ and the dimensionless velocity component u ∗ for 
the time step with Taylor microscale-based Reynolds number Re τ of about 88. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

were chosen for the generator and discriminator, re-
spectively. RMSProp, which relies on the stochas-
tic gradient descent (SGD) approach, was used as
the optimizer. Before using them for training and
reconstruction, all fields were zero mean-centered
and rescaled with their root-mean-square deviation
(RMSD) value, resulting in dimensionless quan-
tities (denoted by an asterisk). For homogeneous
isotropic vector fields, a single averaged RMSD
value computed as the root of the average of the
squared RMSD values of all components was used
for all components. Temporal and spatial operators
were non-dimensionalized with the RMSD value
of the initial velocity field in the DNS u init 

RMSD 

and
the wavenumber magnitude κp , which corresponds
to the peak in the initial energy spectrum in the
DNS. Without centering and rescaling all fields, the
loss function usually diverged during training. 

To increase the reproducibility of this work
and clarify more technical details, the implemented
PIESRGAN was uploaded to GIT ( https://git.
rwth-aachen.de/Mathis.Bode/PIESRGAN.git ). 

2.3. Training strategy 

Many industrially relevant applications are op-
erated at very high Reynolds numbers that are not
accessible by DNS. Thus, training the network only
with the DNS data of the relevant Reynolds num-
ber range is not possible. This raises the ques-
tion whether a network trained with DNS data of 
lower Reynolds numbers is general enough to give
also good results at higher Reynolds numbers, i. e.,
whether it has an extrapolation capability. 

In the a priori test (cf. Subsection 2.4 ), it was
seen that training the network only with DNS data
leads to a lack of accuracy for Reynolds num-
bers falling outside the training range. Therefore,
in this work, the training was extended by intro- 
ducing a second step. After training the genera- 
tor and discriminator simultaneously with DNS 

data (“H”) and corresponding filtered data (“F”) 
only, the generator was further trained and up- 
dated using filtered data (“ ˜ F ”), which were gener- 
ated for a wider range of Reynolds numbers with 

LES without subfilter closing, which can be com- 
puted at low computational cost. Corresponding 
“H” data did not exist, and the discriminator was 
not further updated. Note that, as mentioned be- 
fore, the loss function reduces for this second learn- 
ing phase, as the evaluation of loss terms related 

to DNS data is no longer possible. Thus, the loss 
is driven mainly by the part of the adversarial loss 
that corresponded to correctly recognizing gener- 
ated flow samples and by the physics-informed con- 
tinuity constraint. 

Another critical challenge during the training is 
the search for optimal hyperparameters. The train- 
ing was started with the hyperparameters given by 
Wang et al. [2] . However, the weighting coefficients 
in the loss function were initially chosen such that 
all loss terms had a similar order of magnitude after 
a few numbers of epochs. Afterward, the weight- 
ing coefficient β4 was increased until the error in 

the non-dimensionalized continuity equation based 

on the zero mean-centered and rescaled velocity 
field was comparable to the order of magnitude of 
the error introduced by the numerical approxima- 
tion of the divergence operator. Subsequently, the 
network parameters were tuned by estimating the 
sensitivities around the starting values and choos- 
ing locally optimal values. Finally, the remaining 
weights of the loss function were adjusted. Since it 
was not sufficient to judge the quality of hyperpa- 
rameter combinations only based on the loss func- 
tion, other measurements, such as the spectrum, 

https://git.rwth-aachen.de/Mathis.Bode/PIESRGAN.git
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Table 1 
Overview of the PIESRGAN hyperparameters. The given 
ranges represent the sensitivity intervals with acceptable 
network results. The central values were finally used in this 
work. 

β1 [ 0 . 2 × 10 −5 , 0 . 6 × 10 −4 , 0 . 8 × 10 −4 ] 
β2 [ 0 . 79327 , 0 . 88994 , 0 . 91812 ] 
β3 [ 0 . 04 , 0 . 06 , 0 . 15 ] 
β4 [ 0 . 01 , 0 . 05 , 0 . 06 ] 
βRSF [ 0 . 1 , 0 . 2 , 0 . 3 ] 
βdropout [ 0 . 2 , 0 . 4 , 0 . 5 ] 
l generator [ 1 . 2 × 10 −6 , 4 . 5 × 10 −6 , 5 . 0 × 10 −6 ] 
l discriminator [ 4 . 4 × 10 −6 , 4 . 5 × 10 −6 , 8 . 5 × 10 −6 ] 
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Fig. 3. Dimensionless spectra evaluated on DNS data, fil- 
tered data, and reconstructed data for the dimensionless 
velocity vector u ∗ and passive scalar z ∗ for the time step 
with Reynolds number of about 88. 

Fig. 4. Temporal evolution of the ensemble-averaged di- 
mensionless turbulent kinetic energy 〈 k ∗〉 and ensemble- 
averaged dimensionless dissipation rate 〈 ε ∗〉 . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ere also considered. Table 1 gives a summary of 
yperparameters used for the application case in
his work, including the learning rates for the gen-
rator training and discriminator training, l generator 
nd l discriminator . 

.4. A priori testing 

In this work, one of the largest existing decaying
urbulence DNS datasets [27] was used for training
nd testing the PIESRGAN. The dataset features
eriodic boxes of homogeneous isotropic turbu-

ence with Reynolds numbers based on the Taylor
icroscale Re τ of up to 88, simulated on 4096 3 

esh points. The first data time step investigated
as defined to lie in the self-similar range of the
ow, as indicated with t ∗start in Fig. 4 . Before the
raining, the data was filtered to obtain combi-
ations of “H” and “F”. The PIESRGAN could
econstruct the data within the trained Reynolds
umber range well. To test the extrapolation capa-
ility of the network, the first time step of the DNS
ata was used only for testing, not for training.
s the Reynolds number reduces over time for the
ecaying turbulence case, skipping the first time
tep of the data resulted in a highest Reynolds
umber of about 75 for the training, while testing
as performed with a Reynolds number of 88.
he results are shown in Fig. 2 as “R 

′ ” for the
imensionless passive scalar z ∗ and one dimension-

ess velocity component u ∗. It is obvious that the
etwork adds insufficient small-scale structures to
he flow - maybe because it had never seen such a
igh Reynolds number before, i. e., earlier, it never
eeded to add such small structures to the flow. The
olumn labeled “R” shows the results of a network
dditionally trained with “ ˜ F ” data, featuring Re τ
f up to 250. The reconstruction results are much
etter, and the visual agreement with the DNS
ata is almost perfect. One reason for this could be
hat the “ ˜ F ” data merely modified all weights in the
etwork, which results in higher subfilter contribu-
ions for all Reynolds numbers, randomly leading
o good reproduction for the target Reynolds num-
er but worse results for the others. This would
contradict the idea that the neural network used
the new data to “really learn” the results of the tar-
get Reynolds number by means of the adversarial
loss. Therefore, the PIESRGAN was alternatively
trained with the “H”/“F” dataset and additionally
a dataset “ ˜ F 

′ ”, featuring only Re τ of up to 200.
These results are shown in Fig. 2 with “R 

′′ ”, and
the agreement is as good as before, which indicates
that the network really learned to reproduce the
higher Reynolds number data. This was also con-
firmed by analyzing the results for “R 

′ ” and “R ”
within the Reynolds number training range, which
did not differ (these results are not shown here).
The same result was also observed for the other
two velocity components, which are not visualized
in Fig. 2 . Note that higher Reynolds number data
can be chosen arbitrarily as long as the maximum
Re τ is higher than the target Re τ , which was 88 for
the a priori test. However, the large Re τ of 250 was
selected to enable usage of the trained network for
the ECN Spray A case (cf. Section 3 ). 

In addition to the visual evaluation, Fig. 3
presents the non-dimensionalized spectra (denoted
by S 

∗) computed with “H”, “F”, and “R” data.
It shows that also the statistical agreement be-
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tween DNS and reconstructed data is very good.
Only for very high wavenumber magnitudes κ,
the reconstructed flow field slightly differs from
the DNS data. Note that the spectra based on
the velocity use all three velocity components.
Therefore, S 

∗(u ∗) with bold notation for vec-
tors is shown. Moreover, the average maximum
error evaluated over 1000 reconstructed realiza-
tions in the non-dimensionalized continuity equa-
tion was 4.33 × 10 −8 with a standard deviation of 
2.17 × 10 −8 . This emphasizes the strong impact of 
the physics-informed continuity loss term, as the
error in the non-dimensionalized continuity equa-
tion was on average in the order of 1 × 10 −2 for
networks trained with continuity loss term disabled
(i. e., β4 = 0 ). 

The results presented in Figs. 2 and 3 indicate
that the PIESRGAN is able to learn universal
key features of turbulence with the adversarial
loss, enabling the correct prediction of statistics of 
higher Reynolds number flows, only seeing filtered
data. This is a significant advantage to networks
that have to rely on supervised learning with la-
beled data. How the network is able to detect the
target Reynolds number from the provided fields
with zero mean is an open question and should
be addressed in more detail in future work. The
DL may exploit the scale similarity of small-scale
turbulence, which is a universal feature at suffi-
ciently high Reynolds numbers [28] , to predict flow
fields at different Reynolds numbers. For a poste-
riori testing and application, the trained network
corresponding to the results labeled with “R” in
Figs. 2 and 3 is denoted by PIESRGAN R 

. 

2.5. A posteriori testing 

Before using the trained network PIESRGAN R
in a complex reactive turbulent flow, an a posteriori
test was performed with respect to the decaying
turbulence data. For the test, filtered data of the
early time step t ∗start of a realization of the de-
caying turbulence DNS data, which was not used
during the training, were used as the initial flow
field and advanced over time t according to the
steps outlined in the beginning of this section. To
keep the filter width of the data consistent with
the training data, the DNS data of size 4096 3 were
filtered to a 64 3 mesh. The time step size of the LES
was increased compared to the DNS, and approx-
imated ensemble averages were computed over all
grid points of a single time step. Fig. 4 compares
the decay of the ensemble-averaged dimensionless
turbulent kinetic energy 〈 k 

∗〉 and the ensemble-
averaged dimensionless dissipation rate 〈 ε ∗〉
evaluated during the DNS and the a posteriori test
with PIESRGAN R 

as LES model. All quantities
were non-dimensionalized using u init 

RMSD 

and κp .
To assess the effect of the subfilter model, the
results for an underresolved simulation computed
on the LES mesh without any subgrid model 
are also plotted. The good agreement between 

DNS and PIESRGAN R 

-LES is remarkable, while 
the underresolved simulation underpredicts both 

quantities and the absolute value of the decay rate 
of 〈 k 

∗〉 . During the decay, the Kolmogorov length 

scale and the integral length scale increases with 

time, following a power law. This implies that the 
number of wavenumbers needing closure decreases 
during the decay. The PIESRGAN accounts for 
this change of the relative relevance of the subfil- 
ter closure, which underlines its ability to model 
small-scale turbulence. 

3. Application 

One prominent example of turbulent reactive 
flow is the Spray A case defined by the ECN [22] , 
with Re τ of up to 235, which is chosen here to 

demonstrate the usage of the trained PIESRGAN R 

for combustion. PIESRGAN R 

was used as LES- 
subfilter model for the subfilter turbulent flux in 

the equation of the mixture fraction Z and for 
the subfilter Reynolds stresses in the momentum 

equations. More precisely, the same reactive and 

inert conditions and simulation setup as discussed 

in Davidovic et al. [29] were computed, using the 
chemical mechanism of Yao et al. [30] and a mul- 
tiple representative interactive flamelets (MRIF) 
model. Details of the simulation setup and nu- 
merics can be found in former publications 
[29,31–35] . Compared to the simulations per- 
formed by Davidovic et al. [29] , a coarser mesh 

was used in this work to emphasize the effects of 
the subfilter model, resulting in a minimum grid 

spacing of 100 μm close to the nozzle. A visual- 
ization of a reactive LES with PIESRGAN R 

as 
subfilter model for mixture fraction and velocity 
can be found in the supplementary material video 

S1 . Note that the PIESRGAN R 

was also used to 

evaluate the mixture fraction variance of the re- 
constructed mixture fraction field. It could have 
also been used to compute the subfilter probabil- 
ity density function (PDF) of Z used as part of 
the MRIF model, but instead a classical presumed 

shape beta-PDF was used here. Furthermore, the 
ignition delay time, defined as the time when the 
Favre-filtered OH mass fraction 

˜ Y OH 

reaches 2 % 

of its maximum value ˜ Y 

max 
OH 

(all-time) for the first 
time, was evaluated as the average value with a 
standard deviation of 0.385 ± 0.007 ms (based 

on five realizations), which reasonably agreed 

with the experimental values of about 0.4 ms 
[22] . Averaged over the five realizations, the time- 
averaged lift-off length (LOL) of the flame during 
the statistically stationary phase defined with the 
14 %- ˜ Y 

max 
OH 

(instantaneous)-contour was found to 

be 15.6 ± 0.1 mm. This is also close to experimental 
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Fig. 5. Temporally and circumferentially averaged fuel 
mass fraction evaluated 18.75 mm downstream 

from the nozzle and plotted against the radial distance 
from the spray axis r . 
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ata for this nozzle, which report an LOL of about
6.1 mm [22] . 

Non-premixed combustion, including emission
ormation, is heavily affected by the mixing of fuel
nd oxidizer stream. In order to assess the effect
f the subfilter modeling on mixing, the fuel mass
raction Y fuel is evaluated 18.75 mm downstream
rom the nozzle for the inert conditions. It is tem-
orally and circumferentially averaged during the
tatistically stationary phase labeled as and
lotted against the radial distance from the spray
xis r in Fig. 5 for the PIESRGAN R 

-LES, an LES
ith dynamic Smagorinsky model [29] (denoted by

DS-LES’), an underresolved simulation without
ny subgrid model, and experimental data [36] .
he mixing of the PIESRGAN R 

-LES is weaker
han that of the DS-LES and in better agreement
ith the experimental data. This indicates that

he PIESRGAN R 

is a robust and accurate model,
hich is impressive considering that it was trained
nly with homogeneous isotropic turbulence data.
he underresolved simulation underpredicts the
ixing due to the lack of turbulent transport and

s not robust, as fluctuations accumulate on the
rid-scale, blowing up the simulation. This shows
he importance of subfilter models for this ap-
lication case. Note that the PIESRGAN R 

-LESs
ere run without any clipping, which weakens the
ypothesis that data-driven models are dangerous
o use in real simulations as extreme predictions
ight crash the simulation. Computationally, the
IESRGAN R 

-LES was more expensive than the
S-LES. However, with the rapid improvements

n the field of DL on GPUs, this could change in
he near future. 

. Conclusions 

This work presents a novel GAN-based subfil-
er modeling approach, which employs unsuper-
vised DL with a combination of super-resolution
adversarial and physics-informed losses to accu-
rately predict subfilter statistics in a wide Reynolds
number range. The PIESRGAN was trained with
some of the largest existing decaying turbulence
data. It was found that successive training with fully
resolved and underresolved data increases the gen-
eralization capability of the network. Moreover, it
was shown that the trained network gives good re-
sults in a priori and a posteriori tests, and the im-
portance of the physics-informed loss term based
on the continuity equation was demonstrated. The
advantages of PIESRGAN-LES over LES with dy-
namic Smagorinsky model were discussed by ap-
plying it to the ECN Spray A case with inert and
reactive conditions. Although some aspects of the
network are not fully understood yet, and the data
processing speed needs to be improved, this work
emphasizes the enormous potential of data-driven
models for reactive flows. 

In this work, the GAN-method was applied to
model subfilter terms for momentum and scalar
mixing. The application to reactive scalar fields to
close the chemical source term might also be ben-
eficial, but it is challenging for different reasons.
For instance, for fast chemistry, the source term de-
pends on the “very smallest” scales, which means
that these need to be correctly predicted for multi-
scalar fields. It will be interesting to assess the po-
tential in future work. 
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