000892502 001__ 892502
000892502 005__ 20211209142054.0
000892502 0247_ $$2doi$$a10.1002/vzj2.20129
000892502 0247_ $$2ISSN$$a1539-1663
000892502 0247_ $$2Handle$$a2128/28166
000892502 0247_ $$2altmetric$$aaltmetric:105663230
000892502 0247_ $$2WOS$$aWOS:000648518200001
000892502 037__ $$aFZJ-2021-02111
000892502 082__ $$a550
000892502 1001_ $$00000-0003-0512-4814$$aEhrhardt, Annelie$$b0$$eCorresponding author
000892502 245__ $$aWavelet analysis of soil water state variables for identification of lateral subsurface flow: Lysimeter vs. field data
000892502 260__ $$aHoboken, NJ$$bWiley$$c2021
000892502 3367_ $$2DRIVER$$aarticle
000892502 3367_ $$2DataCite$$aOutput Types/Journal article
000892502 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1639052821_4793
000892502 3367_ $$2BibTeX$$aARTICLE
000892502 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000892502 3367_ $$00$$2EndNote$$aJournal Article
000892502 520__ $$aPreferential and lateral subsurface flow (LSF) may be responsible for the accelerated transport of water and solutes in sloping agricultural landscapes; however, the process is difficult to observe. One idea is to compare time series of soil moisture observations in the field with those in lysimeters, where flow is vertically oriented. This study aims at identifying periods of deviations in soil water contents and pressure heads measured in the field and in a weighing lysimeter with the same soil profile. Wavelet coherency analysis (WCA) was applied to time series of hourly soil water content and pressure head data (15-, 32-, 60-, 80-, and 140-cm depths) from Colluvic Regosol soil profiles. The phase shifts and periodicities indicated by the WCA plots reflected the response times to rain events in the same depth of lysimeter and field soil. For many rain events and depths, pressure and moisture sensors installed in the field soil responded earlier than those in the lysimeter. This could be explained by either vertical preferential flow or LSF from upper hillslope positions. Vice versa, a faster response in the lysimeter soil could be indicative for vertical preferential flow effects. Dry weather conditions and data gaps limited the number of periods with elevated soil moisture in 2016–2018, in which LSF was likely to occur. The WCA plots comprise all temporal patterns of time shifts and correlations between larger data time series in a condensed form to identify potentially relevant periods for more detailed analyses of subsurface flow dynamics.
000892502 536__ $$0G:(DE-HGF)POF4-217$$a217 - Für eine nachhaltige Bio-Ökonomie – von Ressourcen zu Produkten (POF4-217)$$cPOF4-217$$fPOF IV$$x0
000892502 536__ $$0G:(DE-HGF)POF4-2173$$a2173 - Agro-biogeosystems: controls, feedbacks and impact (POF4-217)$$cPOF4-217$$fPOF IV$$x1
000892502 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000892502 7001_ $$0P:(DE-Juel1)158034$$aGroh, Jannis$$b1
000892502 7001_ $$00000-0002-6232-7688$$aGerke, Horst H.$$b2
000892502 773__ $$0PERI:(DE-600)2088189-7$$a10.1002/vzj2.20129$$n3$$pe20129$$tVadose zone journal$$v20$$x1539-1663$$y2021
000892502 8564_ $$uhttps://juser.fz-juelich.de/record/892502/files/vzj2.20129.pdf$$yOpenAccess
000892502 909CO $$ooai:juser.fz-juelich.de:892502$$pdriver$$popen_access$$popenaire$$pdnbdelivery$$pVDB$$pVDB:Earth_Environment
000892502 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)158034$$aForschungszentrum Jülich$$b1$$kFZJ
000892502 9131_ $$0G:(DE-HGF)POF4-217$$1G:(DE-HGF)POF4-210$$2G:(DE-HGF)POF4-200$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Erde und Umwelt$$lErde im Wandel – Unsere Zukunft nachhaltig gestalten$$vFür eine nachhaltige Bio-Ökonomie – von Ressourcen zu Produkten$$x0
000892502 9131_ $$0G:(DE-HGF)POF4-217$$1G:(DE-HGF)POF4-210$$2G:(DE-HGF)POF4-200$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-2173$$aDE-HGF$$bForschungsbereich Erde und Umwelt$$lErde im Wandel – Unsere Zukunft nachhaltig gestalten$$vFür eine nachhaltige Bio-Ökonomie – von Ressourcen zu Produkten$$x1
000892502 9130_ $$0G:(DE-HGF)POF3-255$$1G:(DE-HGF)POF3-250$$2G:(DE-HGF)POF3-200$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bErde und Umwelt$$lTerrestrische Umwelt$$vTerrestrial Systems: From Observation to Prediction$$x0
000892502 9141_ $$y2021
000892502 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-05-04
000892502 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-05-04
000892502 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bVADOSE ZONE J : 2019$$d2021-05-04
000892502 915__ $$0LIC:(DE-HGF)CCBYNC4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial CC BY-NC 4.0
000892502 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2021-05-04$$wger
000892502 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2021-05-04
000892502 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2021-05-04
000892502 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-05-04
000892502 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2021-05-04
000892502 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-05-04
000892502 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2021-05-04
000892502 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000892502 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Blind peer review$$d2021-05-04
000892502 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2021-05-04
000892502 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences$$d2021-05-04
000892502 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-05-04
000892502 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-05-04
000892502 920__ $$lyes
000892502 9201_ $$0I:(DE-Juel1)IBG-3-20101118$$kIBG-3$$lAgrosphäre$$x0
000892502 980__ $$ajournal
000892502 980__ $$aVDB
000892502 980__ $$aI:(DE-Juel1)IBG-3-20101118
000892502 980__ $$aUNRESTRICTED
000892502 9801_ $$aFullTexts