001     892502
005     20211209142054.0
024 7 _ |a 10.1002/vzj2.20129
|2 doi
024 7 _ |a 1539-1663
|2 ISSN
024 7 _ |a 2128/28166
|2 Handle
024 7 _ |a altmetric:105663230
|2 altmetric
024 7 _ |a WOS:000648518200001
|2 WOS
037 _ _ |a FZJ-2021-02111
082 _ _ |a 550
100 1 _ |a Ehrhardt, Annelie
|0 0000-0003-0512-4814
|b 0
|e Corresponding author
245 _ _ |a Wavelet analysis of soil water state variables for identification of lateral subsurface flow: Lysimeter vs. field data
260 _ _ |a Hoboken, NJ
|c 2021
|b Wiley
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1639052821_4793
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Preferential and lateral subsurface flow (LSF) may be responsible for the accelerated transport of water and solutes in sloping agricultural landscapes; however, the process is difficult to observe. One idea is to compare time series of soil moisture observations in the field with those in lysimeters, where flow is vertically oriented. This study aims at identifying periods of deviations in soil water contents and pressure heads measured in the field and in a weighing lysimeter with the same soil profile. Wavelet coherency analysis (WCA) was applied to time series of hourly soil water content and pressure head data (15-, 32-, 60-, 80-, and 140-cm depths) from Colluvic Regosol soil profiles. The phase shifts and periodicities indicated by the WCA plots reflected the response times to rain events in the same depth of lysimeter and field soil. For many rain events and depths, pressure and moisture sensors installed in the field soil responded earlier than those in the lysimeter. This could be explained by either vertical preferential flow or LSF from upper hillslope positions. Vice versa, a faster response in the lysimeter soil could be indicative for vertical preferential flow effects. Dry weather conditions and data gaps limited the number of periods with elevated soil moisture in 2016–2018, in which LSF was likely to occur. The WCA plots comprise all temporal patterns of time shifts and correlations between larger data time series in a condensed form to identify potentially relevant periods for more detailed analyses of subsurface flow dynamics.
536 _ _ |a 217 - Für eine nachhaltige Bio-Ökonomie – von Ressourcen zu Produkten (POF4-217)
|0 G:(DE-HGF)POF4-217
|c POF4-217
|f POF IV
|x 0
536 _ _ |a 2173 - Agro-biogeosystems: controls, feedbacks and impact (POF4-217)
|0 G:(DE-HGF)POF4-2173
|c POF4-217
|f POF IV
|x 1
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Groh, Jannis
|0 P:(DE-Juel1)158034
|b 1
700 1 _ |a Gerke, Horst H.
|0 0000-0002-6232-7688
|b 2
773 _ _ |a 10.1002/vzj2.20129
|0 PERI:(DE-600)2088189-7
|n 3
|p e20129
|t Vadose zone journal
|v 20
|y 2021
|x 1539-1663
856 4 _ |u https://juser.fz-juelich.de/record/892502/files/vzj2.20129.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:892502
|p openaire
|p open_access
|p driver
|p VDB:Earth_Environment
|p VDB
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)158034
913 1 _ |a DE-HGF
|b Forschungsbereich Erde und Umwelt
|l Erde im Wandel – Unsere Zukunft nachhaltig gestalten
|1 G:(DE-HGF)POF4-210
|0 G:(DE-HGF)POF4-217
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-200
|4 G:(DE-HGF)POF
|v Für eine nachhaltige Bio-Ökonomie – von Ressourcen zu Produkten
|x 0
913 1 _ |a DE-HGF
|b Forschungsbereich Erde und Umwelt
|l Erde im Wandel – Unsere Zukunft nachhaltig gestalten
|1 G:(DE-HGF)POF4-210
|0 G:(DE-HGF)POF4-217
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-200
|4 G:(DE-HGF)POF
|v Für eine nachhaltige Bio-Ökonomie – von Ressourcen zu Produkten
|9 G:(DE-HGF)POF4-2173
|x 1
913 0 _ |a DE-HGF
|b Erde und Umwelt
|l Terrestrische Umwelt
|1 G:(DE-HGF)POF3-250
|0 G:(DE-HGF)POF3-255
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-200
|4 G:(DE-HGF)POF
|v Terrestrial Systems: From Observation to Prediction
|x 0
914 1 _ |y 2021
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2021-05-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-05-04
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b VADOSE ZONE J : 2019
|d 2021-05-04
915 _ _ |a Creative Commons Attribution-NonCommercial CC BY-NC 4.0
|0 LIC:(DE-HGF)CCBYNC4
|2 HGFVOC
915 _ _ |a DEAL Wiley
|0 StatID:(DE-HGF)3001
|2 StatID
|d 2021-05-04
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2021-05-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2021-05-04
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-05-04
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2021-05-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2021-05-04
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2021-05-04
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Blind peer review
|d 2021-05-04
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2021-05-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1060
|2 StatID
|b Current Contents - Agriculture, Biology and Environmental Sciences
|d 2021-05-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2021-05-04
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2021-05-04
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IBG-3-20101118
|k IBG-3
|l Agrosphäre
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IBG-3-20101118
980 _ _ |a UNRESTRICTED
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21