000892507 001__ 892507
000892507 005__ 20240709074439.0
000892507 0247_ $$2doi$$a10.1016/j.atmosres.2021.105662
000892507 0247_ $$2ISSN$$a0169-8095
000892507 0247_ $$2ISSN$$a1873-2895
000892507 0247_ $$2Handle$$a2128/27872
000892507 0247_ $$2altmetric$$aaltmetric:106201112
000892507 0247_ $$2WOS$$aWOS:000663573100001
000892507 037__ $$aFZJ-2021-02116
000892507 082__ $$a530
000892507 1001_ $$0P:(DE-HGF)0$$aZhang, Jinqiang$$b0$$eCorresponding author
000892507 245__ $$aDeep stratospheric intrusion and Russian wildfire induce enhanced tropospheric ozone pollution over the northern Tibetan Plateau
000892507 260__ $$aAmsterdam [u.a.]$$bElsevier$$c2021
000892507 3367_ $$2DRIVER$$aarticle
000892507 3367_ $$2DataCite$$aOutput Types/Journal article
000892507 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1622195351_14506
000892507 3367_ $$2BibTeX$$aARTICLE
000892507 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000892507 3367_ $$00$$2EndNote$$aJournal Article
000892507 520__ $$aBy using ozonesonde measurements during July–August in 2016, 2019, and 2020 at Golmud and Qaidam, European Centre for Medium-Range Weather Forecasts (ECMWF) next-generation reanalysis ERA5 data, satellite-borne Moderate Resolution Imaging Spectrometer data products, and backward trajectory calculations from the chemical Lagrangian model of the stratosphere (CLaMS) model, this study analyzes vertical ozone distributions and explores the influence of deep stratospheric intrusions and wildfires on ozone variation in the northern Tibetan Plateau (TP) during the Asian summer monsoon period. Large ozone partial pressures were observed between 20 and 30 km, with a maximum of ~16 mPa at approximately 27 km latitude. The comparisons between the vertical ozone profiles with and without the occurrence of stratospheric intrusions showed that their relative ozone difference was up to 72.4% in the tropopause layer (15.8 km), and a secondary maximum of 66.7% existed in the middle troposphere (10.1 km). The stratospheric intrusions dried the atmosphere by 52.9% and enhanced the ozone columns by 26.1% below the upper troposphere and lower stratosphere. A case study of deep stratospheric intrusion exhibited the occurrence of large ozone partial pressure in the middle troposphere in detail, with an ozone peak of ~6 mPa at 10 km, which was caused by a tropopause fold associated with the westerly wind jet at the north flank of the Asian summer monsoon anticyclone. The stratospheric intrusion processes effectively transported the cold and dry air mass with high ozone in the stratosphere downward to the middle troposphere over the northern TP. This study also confirmed that by long-range transport processes, large wildfire smoke occurred around central and eastern Russia on 19–26 July 2016 greatly caused ozone pollution in the troposphere (6 km depth from the surface) over the northern TP.
000892507 536__ $$0G:(DE-HGF)POF4-211$$a211 - Die Atmosphäre im globalen Wandel (POF4-211)$$cPOF4-211$$fPOF IV$$x0
000892507 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000892507 7001_ $$0P:(DE-Juel1)173997$$aLi, Dan$$b1
000892507 7001_ $$0P:(DE-HGF)0$$aBian, Jianchun$$b2
000892507 7001_ $$0P:(DE-HGF)0$$aBai, Zhixuan$$b3
000892507 773__ $$0PERI:(DE-600)2012396-6$$a10.1016/j.atmosres.2021.105662$$gVol. 259, p. 105662 -$$p105662$$tAtmospheric research$$v259$$x0169-8095$$y2021
000892507 8564_ $$uhttps://juser.fz-juelich.de/record/892507/files/Deep%20stratos%20intru%20and%20Russian%20wildfire.pdf$$yPublished on 2021-05-04. Available in OpenAccess from 2023-05-04.
000892507 909CO $$ooai:juser.fz-juelich.de:892507$$pdnbdelivery$$pVDB$$pVDB:Earth_Environment$$pdriver$$popen_access$$popenaire
000892507 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)173997$$aForschungszentrum Jülich$$b1$$kFZJ
000892507 9130_ $$0G:(DE-HGF)POF3-244$$1G:(DE-HGF)POF3-240$$2G:(DE-HGF)POF3-200$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bErde und Umwelt$$lAtmosphäre und Klima$$vComposition and dynamics of the upper troposphere and middle atmosphere$$x0
000892507 9131_ $$0G:(DE-HGF)POF4-211$$1G:(DE-HGF)POF4-210$$2G:(DE-HGF)POF4-200$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Erde und Umwelt$$lErde im Wandel – Unsere Zukunft nachhaltig gestalten$$vDie Atmosphäre im globalen Wandel$$x0
000892507 9141_ $$y2021
000892507 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-01-29
000892507 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-29
000892507 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2021-01-29
000892507 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
000892507 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000892507 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bATMOS RES : 2019$$d2021-01-29
000892507 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-29
000892507 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-01-29
000892507 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2021-01-29
000892507 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2021-01-29
000892507 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2021-01-29
000892507 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-01-29
000892507 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2021-01-29$$wger
000892507 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-01-29
000892507 920__ $$lyes
000892507 9201_ $$0I:(DE-Juel1)IEK-7-20101013$$kIEK-7$$lStratosphäre$$x0
000892507 9801_ $$aFullTexts
000892507 980__ $$ajournal
000892507 980__ $$aVDB
000892507 980__ $$aUNRESTRICTED
000892507 980__ $$aI:(DE-Juel1)IEK-7-20101013
000892507 981__ $$aI:(DE-Juel1)ICE-4-20101013