000892512 001__ 892512
000892512 005__ 20240712100909.0
000892512 0247_ $$2doi$$a10.1007/s00382-021-05772-2
000892512 0247_ $$2ISSN$$a0930-7575
000892512 0247_ $$2ISSN$$a1432-0894
000892512 0247_ $$2Handle$$a2128/28657
000892512 0247_ $$2altmetric$$aaltmetric:104664639
000892512 0247_ $$2WOS$$aWOS:000643188100001
000892512 037__ $$aFZJ-2021-02120
000892512 082__ $$a550
000892512 1001_ $$0P:(DE-HGF)0$$aSingh, Bhupendra Bahadur$$b0
000892512 245__ $$aLinkage of water vapor distribution in the lower stratosphere to organized Asian summer monsoon convection
000892512 260__ $$aHeidelberg$$bSpringer$$c2021
000892512 3367_ $$2DRIVER$$aarticle
000892512 3367_ $$2DataCite$$aOutput Types/Journal article
000892512 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1631859967_13900
000892512 3367_ $$2BibTeX$$aARTICLE
000892512 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000892512 3367_ $$00$$2EndNote$$aJournal Article
000892512 520__ $$aAccumulation of water vapor in the upper troposphere/lower stratosphere (UT/LS) over the Asian continent is a recognized feature during the boreal summer monsoon. While there has been a debate on the role of monsoon convective intensities on the UT/LS water vapor accumulations, there are ambiguities with regard to the effects of organized monsoon convection on the spatial distribution of water vapor. We provide insights into this aspect using high precision balloon measurements of water vapor from a high-elevation site Nainital (29.4° N, 79.5° E), India, located in the Himalayan foothills and satellite retrievals of water vapor from the Microwave Limb Sounder (MLS). We also use precipitation estimates from the Tropical Rainfall Measuring Mission (TRMM) satellite (i.e., merged product 3B42 and precipitation radar 3A25 estimates of rain rate and rain type viz convective/stratiform), reanalysis circulation data, as well as numerical model simulations. We first evaluate the MLS estimates of water vapor mixing ratios with in situ high precision hygrometer balloon observations over Nainital. It is seen from our analyses of the MLS data that the LS water vapor distribution is closely linked to the organization of the South Asian monsoon convection and its influence on the UT/LS circulation. This link between LS water vapor distribution and organized monsoon convection is also captured in the in situ observations on 3 August 2016. It is evidenced that periods of organized summer monsoon convective activity over the Indian subcontinent and Bay of Bengal promote divergence of water vapor flux in the UT/LS; additionally the Tibetan anticyclonic circulation causes widespread distribution of the UT/LS water vapor. In addition to the effects of Asian monsoon convection, we also note that global climate drivers such as El Niño-Southern Oscillation (ENSO), Brewer–Dobson circulation (BDC), and Quasi-Biennial Oscillation (QBO) can contribute to nearly 38% of the UT/LS water vapor variability over the Asian monsoon region. The main result of our study indicates that widespread spatial distribution and accumulation of water vapor in the LS (about 80% of total accumulation between May and August months) tend to co-occur with organized monsoon convection, intensified divergence of water vapor flux in the UT/LS and intensified Tibetan anticyclone. On the other hand, the circulation response and LS water vapor distribution to pre-monsoon localized deep convection tend to have a limited spatial scale confined to Southeast Asia. Results from model experiments suggest that the UT/LS circulation pattern to organized monsoon convection has resemblance to stationary Rossby waves forced by organized latent heating, with the westward extending response larger by about 15° longitudes as compared to that of the pre-monsoon localized deep convection.
000892512 536__ $$0G:(DE-HGF)POF4-211$$a211 - Die Atmosphäre im globalen Wandel (POF4-211)$$cPOF4-211$$fPOF IV$$x0
000892512 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000892512 7001_ $$0P:(DE-HGF)0$$aKrishnan, Raghavan$$b1$$eCorresponding author
000892512 7001_ $$0P:(DE-HGF)0$$aAyantika, D. C.$$b2
000892512 7001_ $$0P:(DE-HGF)0$$aVellore, Ramesh K.$$b3
000892512 7001_ $$0P:(DE-HGF)0$$aSabin, T. P.$$b4
000892512 7001_ $$0P:(DE-HGF)0$$aKumar, K. Ravi$$b5
000892512 7001_ $$0P:(DE-HGF)0$$aBrunamonti, Simone$$b6
000892512 7001_ $$0P:(DE-Juel1)171206$$aHanumanthu, Sreeharsha$$b7
000892512 7001_ $$0P:(DE-HGF)0$$aJorge, Teresa$$b8
000892512 7001_ $$0P:(DE-HGF)0$$aOelsner, Peter$$b9
000892512 7001_ $$0P:(DE-HGF)0$$aSonbawne, Sunil$$b10
000892512 7001_ $$0P:(DE-HGF)0$$aNaja, Manish$$b11
000892512 7001_ $$0P:(DE-HGF)0$$aFadnavis, Suvarna$$b12
000892512 7001_ $$0P:(DE-HGF)0$$aPeter, Thomas$$b13
000892512 7001_ $$0P:(DE-HGF)0$$aSrivastava, Manoj K.$$b14
000892512 773__ $$0PERI:(DE-600)1471747-5$$a10.1007/s00382-021-05772-2$$p1709–1731$$tClimate dynamics$$v57$$x1432-0894$$y2021
000892512 8564_ $$uhttps://juser.fz-juelich.de/record/892512/files/Singh2021_Article_LinkageOfWaterVaporDistributio.pdf$$yRestricted
000892512 8564_ $$uhttps://juser.fz-juelich.de/record/892512/files/CLDY-S-20-00279.pdf$$yPublished on 2021-04-24. Available in OpenAccess from 2022-04-24.
000892512 909CO $$ooai:juser.fz-juelich.de:892512$$pdnbdelivery$$pVDB$$pVDB:Earth_Environment$$pdriver$$popen_access$$popenaire
000892512 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$aExternal Institute$$b5$$kExtern
000892512 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171206$$aForschungszentrum Jülich$$b7$$kFZJ
000892512 9131_ $$0G:(DE-HGF)POF4-211$$1G:(DE-HGF)POF4-210$$2G:(DE-HGF)POF4-200$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Erde und Umwelt$$lErde im Wandel – Unsere Zukunft nachhaltig gestalten$$vDie Atmosphäre im globalen Wandel$$x0
000892512 9130_ $$0G:(DE-HGF)POF3-244$$1G:(DE-HGF)POF3-240$$2G:(DE-HGF)POF3-200$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bErde und Umwelt$$lAtmosphäre und Klima$$vComposition and dynamics of the upper troposphere and middle atmosphere$$x0
000892512 9141_ $$y2021
000892512 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-01-28
000892512 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-28
000892512 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2021-01-28
000892512 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000892512 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bCLIM DYNAM : 2019$$d2021-01-28
000892512 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-28
000892512 915__ $$0StatID:(DE-HGF)3002$$2StatID$$aDEAL Springer$$d2021-01-28$$wger
000892512 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-01-28
000892512 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2021-01-28
000892512 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2021-01-28
000892512 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2021-01-28
000892512 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-01-28
000892512 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2021-01-28$$wger
000892512 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-01-28
000892512 920__ $$lyes
000892512 9201_ $$0I:(DE-Juel1)IEK-7-20101013$$kIEK-7$$lStratosphäre$$x0
000892512 9801_ $$aFullTexts
000892512 980__ $$ajournal
000892512 980__ $$aVDB
000892512 980__ $$aUNRESTRICTED
000892512 980__ $$aI:(DE-Juel1)IEK-7-20101013
000892512 981__ $$aI:(DE-Juel1)ICE-4-20101013