000892525 001__ 892525
000892525 005__ 20240712113122.0
000892525 0247_ $$2doi$$a10.1002/batt.202000246
000892525 0247_ $$2Handle$$a2128/27784
000892525 0247_ $$2altmetric$$aaltmetric:94668874
000892525 0247_ $$2WOS$$aWOS:000597655900001
000892525 037__ $$aFZJ-2021-02133
000892525 082__ $$a620
000892525 1001_ $$0P:(DE-Juel1)172048$$aMeister, Paul$$b0
000892525 245__ $$aEnabling Mg‐Based Ionic Liquid Electrolytes for Hybrid Dual‐Ion Capacitors
000892525 260__ $$aWeinheim$$bWiley-VCH$$c2021
000892525 3367_ $$2DRIVER$$aarticle
000892525 3367_ $$2DataCite$$aOutput Types/Journal article
000892525 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1620818726_5231
000892525 3367_ $$2BibTeX$$aARTICLE
000892525 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000892525 3367_ $$00$$2EndNote$$aJournal Article
000892525 520__ $$aWe report on the reversible (de)intercalation of TFSI− anions from a Mg‐based ionic liquid electrolyte, Mg(TFSI)2 in Pyr14TFSI, in graphite urn:x-wiley:25666223:media:batt202000246:batt202000246-math-0001 activated carbon hybrid dual‐ion capacitor (DIC) cells. The role of different pseudo reference electrodes (PREs) including Ag‐wire and Li metal is discussed regarding the comparability of different battery cells. We show that an Ag‐wire PRE is not suitable for the designated purpose, while the use of a Li metal PRE results in high reproducibility. Mg‐based DIC cells are compared with cells based on pure Pyr14TFSI and LiTFSI‐Pyr14TFSI electrolytes, and with graphite urn:x-wiley:25666223:media:batt202000246:batt202000246-math-0002 Li metal dual‐ion cells employing LiTFSI‐Pyr14TFSI. At 5.2 V vs. Li|Li+, Mg‐containing DIC cells reveal an improved performance compared to Li‐based cells, i. e., higher capacity (87 vs. 85 mAh g−1) and higher Coulombic efficiency (98 vs. 96 %). These results may pave the way to further studies and performance improvements of Mg‐based batteries and to hybrid DIC chemistries with other cations, especially multi‐valent ones.
000892525 536__ $$0G:(DE-HGF)POF4-122$$a122 - Elektrochemische Energiespeicherung (POF4-122)$$cPOF4-122$$fPOF IV$$x0
000892525 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000892525 7001_ $$00000-0003-0193-1088$$aKüpers, Verena$$b1
000892525 7001_ $$00000-0001-7852-4064$$aKolek, Martin$$b2
000892525 7001_ $$0P:(DE-Juel1)171865$$aKasnatscheew, Johannes$$b3
000892525 7001_ $$0P:(DE-HGF)0$$aPohlmann, Sebastian$$b4
000892525 7001_ $$0P:(DE-Juel1)166130$$aWinter, Martin$$b5$$eCorresponding author
000892525 7001_ $$00000-0002-2097-5193$$aPlacke, Tobias$$b6$$eCorresponding author
000892525 773__ $$0PERI:(DE-600)2897248-X$$a10.1002/batt.202000246$$gVol. 4, no. 3, p. 504 - 512$$n3$$p504 - 512$$tBatteries & supercaps$$v4$$x2566-6223$$y2021
000892525 8564_ $$uhttps://juser.fz-juelich.de/record/892525/files/batt.202000246.pdf$$yOpenAccess
000892525 909CO $$ooai:juser.fz-juelich.de:892525$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000892525 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171865$$aForschungszentrum Jülich$$b3$$kFZJ
000892525 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)166130$$aForschungszentrum Jülich$$b5$$kFZJ
000892525 9130_ $$0G:(DE-HGF)POF3-131$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vElectrochemical Storage$$x0
000892525 9131_ $$0G:(DE-HGF)POF4-122$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vElektrochemische Energiespeicherung$$x0
000892525 9141_ $$y2021
000892525 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2020-08-32
000892525 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2020-08-32
000892525 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000892525 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2020-08-32
000892525 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2020-08-32$$wger
000892525 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2020-08-32
000892525 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000892525 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2020-08-32
000892525 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2020-08-32
000892525 9201_ $$0I:(DE-Juel1)IEK-12-20141217$$kIEK-12$$lHelmholtz-Institut Münster Ionenleiter für Energiespeicher$$x0
000892525 9801_ $$aFullTexts
000892525 980__ $$ajournal
000892525 980__ $$aVDB
000892525 980__ $$aUNRESTRICTED
000892525 980__ $$aI:(DE-Juel1)IEK-12-20141217
000892525 981__ $$aI:(DE-Juel1)IMD-4-20141217