001     892526
005     20240712113122.0
024 7 _ |a 10.1016/j.dib.2020.106688
|2 doi
024 7 _ |a 2128/27785
|2 Handle
024 7 _ |a 33437852
|2 pmid
024 7 _ |a WOS:000617525400074
|2 WOS
037 _ _ |a FZJ-2021-02134
082 _ _ |a 570
100 1 _ |a Stolz, Lukas
|0 P:(DE-Juel1)181055
|b 0
|u fzj
245 _ _ |a Kinetical threshold limits in solid-state lithium batteries: Data on practical relevance of sand equation
260 _ _ |a Amsterdam [u.a.]
|c 2021
|b Elsevier
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1652096334_4713
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The here shown data support the article “The Sand Equation and its Enormous Practical Relevance for Solid-State Lithium Metal Batteries”. [1] In this data set, all cells include the poly (ethylene oxide)-based solid polymer electrolyte (PEO-based SPE). The behaviour in symmetric Li||Li cells are provided in a three-electrode cell setup, thus with the use of a reference electrode. Moreover, the Sand behaviour is reported for varied negative electrodes with the focus on polarization onset, defined as transition time. The data of the electrochemical response after the variation of additional parameter, i.e. SPE thicknesses, are shown, as well. The theoretical Sand equation is linked with practically obtained values also for varied Li salt concentration. Finally, the discharge behaviour is provided including further charge/discharge cycles with the use of LiNi0.6Mn0.2Co0.2O2 (NMC622) as active material for positive electrodes.
536 _ _ |a 122 - Elektrochemische Energiespeicherung (POF4-122)
|0 G:(DE-HGF)POF4-122
|c POF4-122
|f POF IV
|x 0
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Homann, Gerrit
|0 P:(DE-Juel1)169878
|b 1
|u fzj
700 1 _ |a Winter, Martin
|0 P:(DE-Juel1)166130
|b 2
|e Corresponding author
700 1 _ |a Kasnatscheew, Johannes
|0 P:(DE-Juel1)171865
|b 3
|e Corresponding author
773 _ _ |a 10.1016/j.dib.2020.106688
|g Vol. 34, p. 106688 -
|0 PERI:(DE-600)2786545-9
|p 106688 -
|t Data in Brief
|v 34
|y 2021
|x 2352-3409
856 4 _ |u https://juser.fz-juelich.de/record/892526/files/Invoice_OAD0000090261.pdf
856 4 _ |u https://juser.fz-juelich.de/record/892526/files/1-s2.0-S2352340920315675-main.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:892526
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)181055
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)169878
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)166130
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)171865
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Materialien und Technologien für die Energiewende (MTET)
|1 G:(DE-HGF)POF4-120
|0 G:(DE-HGF)POF4-122
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Elektrochemische Energiespeicherung
|x 0
913 0 _ |a DE-HGF
|b Energie
|l Speicher und vernetzte Infrastrukturen
|1 G:(DE-HGF)POF3-130
|0 G:(DE-HGF)POF3-131
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-100
|4 G:(DE-HGF)POF
|v Electrochemical Storage
|x 0
914 1 _ |y 2021
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2020-08-31
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2020-08-31
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2020-08-31
915 _ _ |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
|0 LIC:(DE-HGF)CCBYNCND4
|2 HGFVOC
915 _ _ |a WoS
|0 StatID:(DE-HGF)0112
|2 StatID
|b Emerging Sources Citation Index
|d 2020-08-31
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2020-08-31
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2020-08-31
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2020-08-31
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2020-08-31
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Peer review
|d 2020-08-31
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2020-08-31
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2020-08-31
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0320
|2 StatID
|b PubMed Central
|d 2020-08-31
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2020-08-31
920 1 _ |0 I:(DE-Juel1)IEK-12-20141217
|k IEK-12
|l Helmholtz-Institut Münster Ionenleiter für Energiespeicher
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-12-20141217
980 _ _ |a UNRESTRICTED
980 _ _ |a APC
981 _ _ |a I:(DE-Juel1)IMD-4-20141217


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21