
PHYSICAL REVIEW B 103, 134414 (2021)

Interplay of Dzyaloshinskii-Moriya and Kitaev interactions for magnonic properties
of Heisenberg-Kitaev honeycomb ferromagnets
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The properties of Kitaev materials are attracting ever increasing attention owing to their exotic properties. In
realistic two-dimensional materials, the Kitaev interaction is often accompanied by the Dzyaloshinskii-Moriya
interaction, which poses a challenge for distinguishing their magnitudes separately. In this paper, we demonstrate
that it can be done by accessing magnonic transport properties. By studying honeycomb ferromagnets exhibiting
Dzyaloshinskii-Moriya and Kitaev interactions simultaneously, we reveal nontrivial magnonic topological prop-
erties accompanied by intricate magnonic transport characteristics as given by thermal Hall and magnon Nernst
effects. We also investigate the effect of a magnetic field, showing that it does not only break the symmetry
of the system but also brings drastic modifications to magnonic topological transport properties, which serve
as hallmarks of the relative strength of anisotropic exchange interactions. Based on our findings, we suggest
strategies to estimate the importance of Kitaev interactions in real materials.
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I. INTRODUCTION

Recently, layered magnetic materials with highly
anisotropic Kitaev-like spin interactions originated in
spin-orbit coupling (SOC) are attracting increasing attention
[1–5]. The realization of the celebrated Heisenberg-Kitaev
model has been to date verified in layered iridates A2IrO3

(A = Li, Na) [6–9], α-RuI3 [4,10], and CrI3 [11]. It is known
that depending on specific parameters, the Heisenberg-Kitaev
model can host gapless or gapped spin-liquid states [4,5], and
that a topologically ordered phase can be achieved by apply-
ing an external magnetic field [12–14]. This indicates that the
Heisenberg-Kitaev model hosts a rich phase diagram [3,15],
and as such, Kitaev materials present a promising material
platform for the realization of novel applications in the areas
of topological quantum computing and spintronics [16,17].

One of the most natural ways to extract the properties of the
Kitaev interaction lies in the analysis of the magnon spectra
of a given Kitaev material, which naturally incorporates the
effect of exchange interactions as well as of the magnetic field
[18–20]. However, it has been recently shown that while the
Kitaev interaction can realize topological magnon bands in
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honeycomb ferromagnets [15,21], its effect can be generally
similar to that of the SOC-driven Dzyaloshinskii-Moriya in-
teraction (DMI) [22,23]. In fact, the second-nearest-neighbor
DMI, which is allowed by symmetry in honeycomb materials
[24,25], has been estimated explicitly from ab initio calcula-
tions of monolayer CrI3 [26,27]. Therefore, the same magnon
dispersion can be interpreted based either on DMI, Kitaev
interaction, or their combination. The phase diagram of the
Kitaev-DMI model has been studied in the past, and the dis-
tinction between the gapped and gapless phases of this model
has been shown to be possible to draw by referring to thermal
Hall effect measurements [28]. In order to distinguish whether
the system is DMI or Kitaev interaction dominated, magnonic
properties other than the dispersion have to be investigated in
detail.

In this paper, we investigate the magnonic properties
of honeycomb ferromagnets exhibiting Kitaev and DMI
interactions in the presence of a Heisenberg exchange
and magnetocrystalline anisotropy exposed to a magnetic
field (see Fig. 1). Based on the topological analysis of the
magnonic states, we characterize the spectra of the model and
make predictions concerning the behavior of the thermal Hall
and magnon Nernst conductivity in response to changes in the
parameters of the model, proposing a strategy to distinguish
whether the system is dominated by a Kitaev interaction or
DMI.
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FIG. 1. (a) Sketch of the structure of a honeycomb CrI3 mono-
layer. The unit cell is outlined with a thin black line, where blue
balls represent Cr3+ ions and pink balls are iodide ions. The Kitaev
bonds x (red), y (dark blue), z (yellow) are indicated with thick
colored lines. The arrows mark the second-nearest-neighbor bond
orientations along the black dotted lines that share a common sign of
the out-of-plane DM vector. (b) Schematic diagram of the influence
of an in-plane magnetic field B on the spin direction S whose polar
angle is defined as θs. (c) The perspective view of the Cr2I2 plane,
where its normal vector is marked as γ̂ and the Kitaev angle is
defined as the polar angle of γ̂ .

II. MODEL AND METHOD

We consider the effective spin Hamiltonian on a two-
dimensional ferromagnetic honeycomb lattice, sketched in
Fig. 1, given by

H = −
∑

i, j

Ji jSi · S j − K
∑

〈i j〉γ
Sγ

i Sγ
j −

∑

i j

Di j · (Si × S j )

−
∑

i

A(n̂i · Si )
2 − B · μBg

∑

i

Si, (1)

where the Ji j coefficients mediate the isotropic Heisenberg
exchange interaction between spins Si and S j on sites i and
j, and the second term is due to the anisotropic Kitaev inter-
action, where Sγ

i = Si · γ̂i j with γ̂i j being the Kitaev vector
determined by the sites i and j. The second-nearest-neighbor
DMI is represented by the third term with DMI vectors Di j

pointing out of plane, as required by the symmetry of the
structure, i.e., Di j = (0, 0, Dz

i j ). Additionally, we add a single-
ion anisotropy term with respect to the local easy axis n̂i

(choosing it to be the unit vector along the z direction), and
the energy of Zeeman coupling to the magnetic field B, with
μB as the Bohr magneton and g-factor of 2.

The structure that we consider here (Fig. 1) is a rep-
resentative of the Kitaev materials such as α-RuCl3 [4,10]
and CrI3 [11], and for simplicity we refer to our studied
system as CrI3 in the following. Referring to experimental
data on the latter material [11], we set approximate values
for the nearest-neighbor exchange interaction J = 0.2 meV,
the Kitaev interaction K = 5.2 meV, and the spin moment
magnitude S = 1.5. We consider an easy-axis anisotropy en-
ergy of A = 0.1 meV chosen so as to ensure that the ground
state is ferromagnetic along the z axis. As displayed in
Fig. 1(c), γ̂i j is defined as the normal vector to the Cr2I2

plane spanned by Cr ions i and j, and the nearby I atoms.
Respectively, the Kitaev vector corresponding to the yellow
bond in Fig. 1(a) and marked with z is chosen as γ̂z =
(sin θ, 0, cos θ ) = (

√
2√
3
, 0, 1√

3
) [11,29], where the Kitaev an-

gle θ is about 54.74◦ for the case of CrI3. The Kitaev vectors
for red and blue bonds are determined analogously. More de-
tails concerning the model can be found in the Supplemental
Material (SM) Note 1 [30].

Further, the Holstein-Primakoff transformation [31] is em-
ployed to rewrite the Hamiltonian in terms of bosonic ladder
operators ai and a†

i . In the transformed spin-wave Hamilto-
nian, we keep only the quadratic terms in the spin operators
and a Fourier transform of the bosonic ladder operators is
performed to rewrite the problem in the momentum space.
The Fourier-transformed Hamiltonian, denoted as H2, thus
becomes a 2n × 2n matrix, where n = 2 stands for two atoms
in the unit cell of honeycomb lattice [32–34]. We diagonalize
the dynamical matrix of H2 based on the commutation rela-
tion i d�(k)

dt = [�(k), H2(k)] = D�(k), where the dynamical
matrix is given by D = ĝH2 with ĝ = [(1, 0), (0,−1)], 1 as
the n × n identity matrix, and a basis is chosen as �(k) =
[a1k, a2k, a†

1−k, a†
2−k]T . Only positive real eigenvalues of the

dynamical matrix D are considered and the stability of the sys-
tem is confirmed when there are two non-negative eigenvalues
for each vector k. We employ the magnon Berry curvature for-
malism to investigate the topological properties of the model,
with the magnon Berry curvature of the nth spin-wave branch
�

xy
nk evaluated according to

�
xy
nk = −2 Im

∑

m �=n

〈�nk| ∂D(k)
∂kx

|�mk〉 〈�mk| ∂D(k)
∂ky

|�nk〉
(εnk − εmk )2

, (2)

where |�nk〉 is the right eigenstate of the spin-wave Hamilto-
nian with the energy εnk. The topological thermal Hall effect
of magnons is the generation of a transverse thermal Hall
voltage under an applied longitudinal temperature gradient
[35,36]. Based on the expression for the Berry curvature, the
transverse thermal Hall conductivity κ

xy
TH [37] and magnon

Nernst conductivity κ
xy
N [38,39] of the system is calculated

(more details are shown in SM Note 3) [30].

III. THE HEISENBERG-KITAEV MODEL

We first ignore the effect of the magnetic field and DMI,
and focus on the magnonic transport properties of the simpli-
fied Heisenberg-Kitaev model. As the Kitaev angle θ can be
different in different Kitaev materials [11,40], we investigate
the Heisenberg-Kitaev model by varying the θ angle and the
magnitude of K , assuming that the sign of the latter remains
positive. We further keep the value of J + K/3 constant so
as to ensure that the ground state has the same energy. By
comparing the band dispersions for different K and θ values
shown in Fig. 2(a), we find that the band gap between the two
modes �K is enlarged as either K or θ increases [see Figs.
2(g) and 2(h)]. Meanwhile, a larger K not only decreases the
spin stiffness at the � point but also opens a larger band gap at
K, as shown in Figs. 2(a) and 2(h). As a larger θ enhances the
effect of the anisotropic exchange interaction, the single-ion
anisotropy energy is introduced to ensure the stability of the
system.
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FIG. 2. (a) The comparison of magnon dispersions along high-symmetry lines for different values of the Kitaev parameters. Gray, blue,
and red lines correspond to the K values of 0, 5.2, and 3 meV. The dashed and solid lines correspond to the Kitaev angles θ of 45◦ and 54.74◦,
respectively. The corresponding energy-resolved Chern number is shown in (b). The Berry curvature distribution of the first magnon branch in
the first Brillouin zone for different K values with θ = 54.74◦ is shown in the inset of (b). The color map ranges from −40 to 40 in arbitrary
(arb.) units, and the exceeding values are marked with black. The temperature dependence of thermal Hall conductivity κ

xy
TH and magnon Nernst

conductivity κ
xy
N are shown in (c) and (d), in units of 10−11 W/K and kB/2π , respectively. (e) The map of κ

xy
TH/T as a function of temperature T

and parameter K at the Kitaev angle of θ = 54.74◦. (f) The map of κ
xy
TH/T as a function of T and θ at a constant K value of 5.2 meV. The units

of the color maps in (e) and (f) are chosen as W/K2. The magnon band gap �K as a function of K (at θ = 54.74◦) and θ (at K = 5.2 meV) is
shown in (g) and (h), respectively.

We address the topological character of the magnonic
bands by computing the Chern number Cn, given by Cn =

1
2π

∫
�

xy
nk dk, where the integral is performed over the first

Brillouin zone (BZ), and n is the nth magnon branch. The
magnonic topology is revealed by computing the Chern num-
bers to be −1 and +1 for the first and second branches in the
Heisenberg-Kitaev model, in accord with an existing ab initio
analysis [41]. As shown in Fig. 2(b), the energy-dependent
Chern number defined as an integral of the Berry curvature at a
given energy, as well as the Berry curvature distribution of the
first branch, indicate that the largest contributions to the Chern
number come from around the K point. Besides, the observed
Chern number variation and Berry curvature distribution are
quite nontrivial in energy and in the reciprocal space, which
brings about the unusual topological transport properties as
manifested in the unusual temperature dependence of the ther-
mal Hall conductivity and the magnon Nernst conductivity.

The thermal Hall conductivity κ
xy
TH and magnon Nernst

conductiviy κ
xy
N are calculated based on the well-known Berry

curvature expressions, as discussed in SM Note 3 [30]. The
temperature range considered for the analysis of the conduc-
tivities is motivated by the fact that the Curie temperature of
the system exposed to an external field depends sensitively on
the magnitude of J and A, and can reach very sizable values
[11]. As shown in Figs. 2(c) and 2(d), a sign change with
increasing temperature T of κ

xy
TH and κ

xy
N is clearly obtained for

the values of K = 5.2 meV and θ = 54.74◦, which is in line
with the observations for Kitaev materials [42,43]. This can be
explained by a variation in the sign of the energy-dependent
Chern number in the energy region of 1–2 meV for these
specific values of K and θ , which is absent for smaller values
of Kitaev parameters. For smaller K and θ , the Berry curvature
magnitude rises at much higher energies, which explains the

overall suppression of thermal Hall and magnon Nernst con-
ductivity that we observe. To emphasize this effect further, we
plot the dependence of κ

xy
TH/T on temperature and parameters

K and θ separately in Figs. 2(e) and 2(f). In this figure, we
observe that regardless of the sign of κ

xy
TH/T , its absolute value

always increases with K and θ at a given temperature. Similar
conclusions can be drawn for the magnon Nerst conductivity.
In Fig. 2(f), the range of considered angles is limited by 54.75◦
owing to the fact that the system becomes unstable if the
single-ion anisotropy energy remains unchanged. More details
concerning the θ dependence of the magnon Nernst effect are
provided in SM Note 7 [30].

IV. IMPACT OF DMI

Next, we investigate the impact of DMI on the magnonic
transport properties of the Heisenberg-Kitaev model. As
shown in Fig. 3(a), our results indicate that both DMI and
Kitaev interaction can modify the magnon dispersion and
open a gap at the crossing point at K. The difference in
the impact of DMI and Kitaev interactions is that the latter
strongly influences the shape of magnon dispersion, whereas
the DMI mainly influences the dispersion around the K point.
As also visible in Figs. 3(a) and 3(b), a band gap of the same
magnitude �K can be realized by a combination of different
DMI and Kitaev parameters. For instance, as shown in Fig. S1
[30], the experimental magnon dispersion of CrI3 can be fitted
well with both the Heisenberg-Kitaev model or Heisenberg-
DMI model [11,25]. In this context, the relevance of a given
model can be probed by accessing its topological transport
properties and comparing them to experiments.

The topological thermal Hall conductivity κ
xy
TH modulated

by Kitaev parameters (θ, K) and DMI (D) is shown in
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FIG. 3. (a) The comparison of magnon dispersions with different Kitaev and DMI parameters specified in the legend (in the units of meV
and degrees). The magnon dispersions represented with black, blue, green, and red lines have almost the same band gap �K between the
two branches. (b) Band gap �K as a function of D and K at θ = 54.74◦. (c) Dependence of thermal Hall conductivity κ

xy
TH on K and D at

T = 100 K and θ = 54.74◦. The T dependence of thermal Hall conductivity κ
xy
TH is shown in (d)–(g). (d) κ

xy
TH as a function of T and D, with

K and θ corresponding to the case of CrI3. (e), (f) The corresponding BZ distribution of the Berry curvature (in arb. units) for the first band
with D = +0.4 meV (e) and −0.4 meV (f) and the Kitaev interaction is the same as (d). (g) κ

xy
TH as a function of T and K for θ = 54.74◦ and

D = −0.2 meV. (h) κ
xy
TH as a function of θ and D at T = 100 K and K = 5.2 meV. The corresponding color map is in units of W/K.

Figs. 3(c) and 3(d) and Figs. 3(g) and 3(h). The topologi-
cal phase boundary marking different sets of (C1,C2) Chern
numbers is shown with a white dashed line. As the sign of
the Berry curvature generally changes in the BZ for the first
branch [Figs. 3(e) and 3(f)], the zero isoline of κ

xy
TH does not

generally coincide with the phase boundary, which is different
from the purely DMI-mediated system [34,37]. Similar to
Fig. 2(e), the sign change of κ

xy
TH is observed with increasing

T in Figs. 3(d) and 3(g) in the topological phase marked as
(−1,+1). This feature can be explained by the fact that while
DMI mainly influences the magnonic states around the K or
M points, the Berry curvature around the � point is mainly
determined by the Kitaev interaction [see Figs. 3(e) and 3(f)
and insets of Fig. 2(b)]. The total contribution to κ

xy
TH thus

presents a subtle competition between Berry curvature contri-
butions from around these points, whose overall sign depends
on the interplay between the parameters. The phase diagrams
of κ

xy
TH with respect to θ , K , and D at T = 100 K are shown

in Figs. 3(c) and 3(h). Consistent with the discussion above,
the magnitude of κ

xy
TH is directly determined by the strength of

K and magnitude of θ . Notably, at a given K , the sign of κ
xy
TH

can be adjusted by the sense of DMI. Similar observations can
be made also for the magnon Nernst conductivity, as shown in
Fig. S6 [30].

V. EFFECT OF A MAGNETIC FIELD

Finally, we explore the effect of an external in-plane
magnetic field, as shown in Fig. 1(b). As a result of
the magnetic field B = B(cos φs, sin φs, 0) the spins of
the Kitaev magnet are inclined into the plane: Si =
S(sin θs cos φs, sin θs sin φs, cos θs), where θs and φs represent

the polar angle and azimuthal angle, respectively. The rela-
tionship between the strength of the field B and the inclination
angle θs is given by sin θs = gμBB/2AS (see more details in
SM Note 6 [30]).

As shown in Figs. 4(a) and 4(b) and Figs. S7 and S8
[30], both polar angles θs and azimuthal angles φs have an
influence on the magnon dispersion. Especially φs has a strong

FIG. 4. (a), (b) Evolution of the band gap �K with the angles θs

and φs in the Heisenberg-DMI model (K = 0) (a), and Heisenberg-
Kitaev model (D = 0) (b). (a) and (b) share the same color map and
the units are meV. (c) Thermal Hall conductivity κ

xy
TH as a function

of θs and φs at T = 100 K [same parameters as in (b)]. (d) κ
xy
TH as

a function of temperature and φs at θs = 60◦ and (e), (f) κ
xy
TH as a

function of temperature and θs for different values of D assuming
φs = 0◦ and K = 5.2 meV. (c)–(f) share the same color map in units
of W/T.
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impact on the band gap when θ is larger than 40◦ at finite
K , while the band gap is only influenced by the polar angle
θs in the Heisenberg-DMI model (K = 0). Furthermore, the
C3 symmetry of the magnon dispersion is broken if the polar
angle is nonzero assuming a nonvanishing Kitaev interaction.

We draw the topological phase diagram of thermal Hall
conductivity as a function of θs and φs in Fig. 4(c). When θs

is smaller than 40◦, the system resides in the (−1,+1) phase,
and the influence of φs is suppressed. However, κ

xy
TH exhibits a

very nontrivial dependence on φs when the system enters the
(+1,−1) phase upon increasing θs. The strong dependence of
κ

xy
TH on φs and θs is also visible in the temperature-dependence

plots shown in Figs. 4(d)–4(f). As becomes apparent from
Fig. 4(d), the C3 symmetry of the conductivity is preserved,
in line with the symmetry of the Kitaev interaction on a
honeycomb lattice. Moreover, from Figs. 4(e) and 4(f) we
observe a strong influence of the DMI on the magnitude and
angular dependence of the thermal Hall conductivity. Overall,
our results reveal a rich landscape of the thermal Hall effect
of Kitaev ferromagnets exposed to an external magnetic field.

VI. DISCUSSION

In our study we investigate the magnonic properties of hon-
eycomb feromagnets with DMI and Kitaev interaction subject
to an external magnetic field. On the one hand, we observe
intricate magnonic transport characteristics, which have been
observed in Kitaev materials [42,43] that we attribute to the
nontrivial Berry phase properties of the system. On the other
hand, our results demonstrate a rich magnonic topological
phase diagram drawn as a function of Kitaev parameters,
DMI, and magnetic field strength. Since the magnitude of
the latter effects can be adjusted through e.g., application of
strain [44] or electric field [45], our investigation provides a
good reference point for designing the magnonic properties of
candidate Kitaev materials. Our findings bear significant rele-
vance given that although several Kitaev materials have been

discovered to date (e.g., Refs. [4,6–10]), it is still not clear
how to judge the relative importance of the Kitaev interaction
with respect to DMI.

From the perspective of magnons, based on the results of
our work, we propose a strategy to disentangle the two types
of interactions from each other: If an application of an external
in-plane magnetic field brings along a significant modification
of the shape of the magnon dispersion and a strong variation
of the magnonic properties as a function of the in-plane direc-
tion of the field, then the system is dominated by the Kitaev
interaction rather than DMI. Additionally, the changes of sign
in the thermal transverse characteristics as a function temper-
ature or strength of an external magnetic field can serve as
another indication of the prominence of the Kitaev interaction
in the system. These simple criteria can potentially enable a
magnonic characterization of exchange interactions of Kitaev
materials, and pave the way to employing magnonic topology
for designing their exotic properties.

ACKNOWLEDGMENTS

This project was supported by the China Scholarship Coun-
cil (CSC) (Grant No. [2016]3100). The work was also sup-
ported by the Deutsche Forschungsgemeinschaft (DFG, Ger-
man Research Foundation)–Grants No.TRR 173–268565370
(project A11) and No. TRR 288–422213477 (project B06).
We acknowledge funding under SPP 2137 “Skyrmionics”
of the Deutsche Forschungsgemeinschaft (DFG) and priority
Programme SPP 2244 2D Materials - Physics of van der Waals
Heterostructures of the DFG (project LO 1659/7-1). We
gratefully acknowledge financial support from the European
Research Council (ERC) under the European Union’s Horizon
2020 research and innovation program (Grant No. 856538,
project “3D MAGiC”). We gratefully acknowledge computing
time on the supercomputers of Jülich Supercomputing Center,
and at the JARA-HPC cluster of RWTH Aachen.

[1] J. Chaloupka, G. Jackeli, and G. Khaliullin, Phys. Rev. Lett.
105, 027204 (2010).

[2] J. Chaloupka, G. Jackeli, and G. Khaliullin, Phys. Rev. Lett.
110, 097204 (2013).

[3] L. Janssen, E. C. Andrade, and M. Vojta, Phys. Rev. Lett. 117,
277202 (2016).

[4] A. Banerjee, C. Bridges, J.-Q. Yan, A. Aczel, L. Li, M. Stone,
G. Granroth, M. Lumsden, Y. Yiu, J. Knolle et al., Nat. Mater.
15, 733 (2016).

[5] Y. Kasahara, T. Ohnishi, Y. Mizukami, O. Tanaka, S. Ma, K.
Sugii, N. Kurita, H. Tanaka, J. Nasu, Y. Motome et al., Nature
(London) 559, 227 (2018).

[6] Y. Singh, S. Manni, J. Reuther, T. Berlijn, R. Thomale, W.
Ku, S. Trebst, and P. Gegenwart, Phys. Rev. Lett. 108, 127203
(2012).

[7] S. K. Choi, R. Coldea, A. N. Kolmogorov, T. Lancaster, I. I.
Mazin, S. J. Blundell, P. G. Radaelli, Y. Singh, P. Gegenwart,
K. R. Choi, S.-W. Cheong, P. J. Baker, C. Stock, and J. Taylor,
Phys. Rev. Lett. 108, 127204 (2012).

[8] F. Ye, S. Chi, H. Cao, B. C. Chakoumakos, J. A. Fernandez-
Baca, R. Custelcean, T. F. Qi, O. B. Korneta, and G. Cao, Phys.
Rev. B 85, 180403(R) (2012).

[9] S. H. Chun, J.-W. Kim, J. Kim, H. Zheng, C. C. Stoumpos, C.
Malliakas, J. Mitchell, K. Mehlawat, Y. Singh, Y. Choi et al.,
Nat. Phys. 11, 462 (2015).

[10] J. Sears, M. Songvilay, K. Plumb, J. Clancy, Y. Qiu, Y. Zhao,
D. Parshall, and Y.-J. Kim, Phys. Rev. B 91, 144420 (2015).

[11] I. Lee, F. G. Utermohlen, D. Weber, K. Hwang, C. Zhang, J. van
Tol, J. E. Goldberger, N. Trivedi, and P. C. Hammel, Phys. Rev.
Lett. 124, 017201 (2020).

[12] A. Kitaev, Ann. Phys. 321, 2 (2006).
[13] H.-C. Jiang, Z.-C. Gu, X.-L. Qi, and S. Trebst, Phys. Rev. B 83,

245104 (2011).
[14] F. G. Utermohlen and N. Trivedi, arXiv:2012.11604.
[15] P. A. McClarty, X.-Y. Dong, M. Gohlke, J. G. Rau, F. Pollmann,

R. Moessner, and K. Penc, Phys. Rev. B 98, 060404(R) (2018).
[16] C. Nayak, S. H. Simon, A. Stern, M. Freedman, and S. D.

Sarma, Rev. Mod. Phys. 80, 1083 (2008).

134414-5

https://doi.org/10.1103/PhysRevLett.105.027204
https://doi.org/10.1103/PhysRevLett.110.097204
https://doi.org/10.1103/PhysRevLett.117.277202
https://doi.org/10.1038/nmat4604
https://doi.org/10.1038/s41586-018-0274-0
https://doi.org/10.1103/PhysRevLett.108.127203
https://doi.org/10.1103/PhysRevLett.108.127204
https://doi.org/10.1103/PhysRevB.85.180403
https://doi.org/10.1038/nphys3322
https://doi.org/10.1103/PhysRevB.91.144420
https://doi.org/10.1103/PhysRevLett.124.017201
https://doi.org/10.1016/j.aop.2005.10.005
https://doi.org/10.1103/PhysRevB.83.245104
http://arxiv.org/abs/arXiv:2012.11604
https://doi.org/10.1103/PhysRevB.98.060404
https://doi.org/10.1103/RevModPhys.80.1083


LI-CHUAN ZHANG et al. PHYSICAL REVIEW B 103, 134414 (2021)
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