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ABSTRACT: All-oxide-based synthetic antiferromagnets (SAFs) are attracting intense research interest due to 

their superior tunability and great potentials for antiferromagnetic spintronic devices. In this work, using 

La2/3Ca1/3MnO3/CaRu1/2Ti1/2O3 (LCMO/CRTO) superlattice as a model SAF, we investigated the layer-resolved 

magnetic reversal mechanism by polarized neutron reflectivity (PNR). We found that the reversal of LCMO layer 

moments is mediated by nucleation, expansion, and shrinkage of a magnetic soliton. This unique magnetic reversal 

process creates a reversed magnetic configuration of the SAF after a simple field cycling. Therefore, it can enable 

a vertical data transfer from the bottom to the top of the superlattice. The physical origin of this intriguing magnetic 

reversal process could be attributed to the cooperation of the surface spin-flop effect and enhanced uniaxial 

magnetic anisotropy of the bottom LCMO layer. This work may pave a way to utilize all-oxide-based SAF for 3-

dimensional spintronic devices with vertical data transfer and high-density data storage.  

KEYWORDS:  Synthetic antiferromagnets, Polarized neutron reflectivity, Neutron scattering, Interlayer 

exchange coupling, Magnetic thin films, Oxide superlattices, in-plane anisotropy 
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INTRODUCTION 

Multi-layered synthetic antiferromagnets (SAF) have been extensively studied as a promising candidate for next-

generation spintronic memory and logic devices.1, 2, 3 A typical SAF usually consists of alternatively stacked 

ferromagnetic (FM) layers and non-magnetic spacer layers. The nature of antiferromagnetic (AF) interlayer 

exchange coupling (IEC) between the FM layers highly depends on the metallicity of the spacer layer.4 For instance, 

in the CoFeB/Ru/CoFeB SAF system, the metallic Ru layer can trigger antiferromagnetic coupling of CoFeB layers 

through Ruderman-Kittel-Kasuya-Yosida-like (RKKY-like) exchange interaction.5, 6 By contrast, in the 

Fe/MgO/Fe SAF system, the spin-polarized tunneling through the insulating MgO turns out to be the origin of 

antiferromagnetic interlayer coupling.7, 8 

In addition to the metal/alloy-based SAFs, all-oxide-based SAFs were recently realized in an epitaxially-grown 

manganite/ruthenate superlattice (SL).9 In this epitaxial system, FM La2/3Ca1/3MnO3 (LCMO) layers were separated 

by non-magnetic CaRu1/2Ti1/2O3 (CRTO) spacers.10 The non-magnetic CRTO spacers not only trigger an AF-IEC 

between the LCMO layers but also enhance the TC of ultrathin LCMO layers via interfacial charge transfer. 10, 11 

Because of the intimate interplays between spin, lattice, orbital, and charge degrees of freedom, all-oxide-based 

SAFs potentially have superior tunability compared to the alloy/metal-based counterparts.12 However, the layer-

resolved magnetic reversal mechanism of all-oxide SAFs remains elusive. During the cycling of the external 

magnetic field (H), the LCMO/CRTO SL gradually exhibits an AF ground state, an intermediate (IM) state, and a 

saturated FM state.9,10,11 The magnetic configurations of the IM states are unclear but particularly intriguing. 

Clarifying the microscopic magnetic structure of these magnetic states not only leads to a deeper understanding of 

the switching dynamics of the SAF but also paves a new way for designing all-oxide-based spintronic devices.  

In this work, using polarized neutron reflectivity (PNR) as a probe, we have explored the layer-resolved 

magnetization reversal mechanism of the LCMO/CRTO SAF. PNR characterization acquires the scattering contrast 

of polarized neutrons across interfaces and therefore possesses high interfacial/surface sensitivity.13, 14, 15 Therefore, 

PNR is effective to detect depth-resolved magnetic structures in thin films and heterostructures. Using this powerful 

tool, we have determined the microscopic magnetic configurations of the LCMO/CRTO SL. More interestingly, 

we found that the reversal of LCMO layer moments in this SAF under external H cycling is mediated by nucleation, 

expansion, and shrinkage of a magnetic soliton. The soliton-mediated unique magnetic reversal process can realize 

a vertical data transfer from the bottom to the top of the SAF. Hence, our work provides a new strategy for designing 

3-dimensional AF spintronic devices via all-oxide-based SAF.16  

 

EXPERIMENTAL SECTION 

Fabrication of the sample. The LCMO/CRTO SL was epitaxially grown on the 001-oriented NdGaO3 

[NGO(001)] substrate using pulsed laser deposition (PLD). By carefully monitoring the growth rate, the thickness 

of LCMO and CRTO layers was fixed to 7 unit-cells (u.c.) (~2.8 nm) and 3 u.c. (~1.2 nm), respectively. The growth 

of LCMO/CRTO bilayers was repeated by 10 times, resulting in an LCMO/CRTO SL [denoted as 

(LCMO/CRTO)10]. An additional CRTO layer of 3 u.c. thick was capped on the topmost LCMO layer. Using this 
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stacking sequence (inset of Figure 1a), we can ensure that each LCMO layer in the SL shares the same chemical 

and structural boundary conditions.   

Characterization methods. The magnetic properties were measured on a Vibrating-sample magnetometer 

(VSM). X-ray reflectivity (XRR) was carried out on a Bruker D8 XRR instrument with CuK alpha and 2 Goebel 

mirrors for parallel beam optics. HAADF/STEM images were performed on an FEI Titan Themis Z microscope 

equipped with a probe-forming aberration corrector and operated at 300 kV. The PNR experiments was carried out 

at three instruments, that is, D17 at Institut Laue-Langevin (ILL) in France17, 18, MARIA at the Heinz Maier-

Leibnitz Zentrum (MLZ) in Germany19, 20 and POLREF at ISIS Neutron and Muon Source in the U.K.21 

Fittings and simulations of the XRR and PNR data. The fittings and simulations of the XRR and PNR data 

were performed using package GenX. The combination of XRR and PNR fitting is important to minimize the error 

produced by simulation. We determined the structural parameters by XRR and applied them to the PNR fitting 

process. Therefore, the magnetic parameters obtained by PNR fitting become more reliable. 

 

RESULTS AND DISCUSSION 

 We first characterize the epitaxial quality and structural parameters of the LCMO/CRTO SL. Figure 1a shows 

the specular X-ray reflectivity (XRR) curve (scatter) of the LCMO/CRTO SL. The curve displays clear Kiessing 

fringes and sharp superlattice Bragg (SLB) peaks, demonstrating a high crystal quality and well-defined 

heterointerfaces in this SL.22, 23 The best-fitted simulation curve (solid line) matches the experimental data well. 

The fitting results, presented in Table S1, provide a thickness of the LCMO (CRTO) layer of 28.13 (12.54) Å, 

consistent with the nominal values determined from the growth rate (7 and 3 u.c. for LCMO and CRTO layers, 

respectively). The scattering length density derived from XRR fitting can be further utilized for minimizing the 

uncertainty of PNR fitting. As shown in Figure 1b, the scanning transmission electron microscopy (STEM) image 

measured in high-angle-annular-dark-field (HAADF) mode further confirms that the SL has a coherent epitaxial 

structure, uniform layer thicknesses, and sharp interfaces. The interfacial interdiffusion is limited within 1 u.c. 

The magnetic characterizations show that the LCMO/CRTO SL is a typical uniaxial SAF (Figure 1c). The 

orthorhombic NGO (001) substrate imposes a tensile strain of +0.85% along [010] axis while a compressive strain 

of -0.70% along the [100] axis of the LCMO.24 This anisotropic strain state can give rise to a robust in-plane uniaxial 

magnetic anisotropy (IMA) along [010] axis.25 Thus, we measured all the magnetic properties along the [010] easy 

axis. Note that the paramagnetic signal from the NGO substrate has been subtracted for all of the magnetic 

characterizations (details are shown in Figure S1 and S2). The inset of Figure 1c shows the temperature-dependent 

magnetization (M-T) curve measured during field-cooling the SL at 200 Oe. Consistent with our previous works, 

the M-T curve exhibits a clear FM transition at a Curie temperature (TC) of 182 K.12, 26, 27 Upon further cooling, M 

drops at 142 K, which can be defined as the AF Néel temperature (TN). Note that we have measured the magnetic 

properties of a CRTO thin film and confirmed that the ultrathin CRTO thin film is non-magnetic (Figure S3). Given 

a negligible magnetism in the CRTO thin films, the drop in M signifies an AF alignment between the magnetic 

moments of adjacent LCMO layers.28  
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The AF coupling of LCMO layers in the SL can be further confirmed by an M-H loop measured at 50 K (Figure 

1c). The M-H scans from both positive to negative (blue) and negative to positive (red) values exhibit multiple 

plateaus, corresponding to distinct magnetic configurations. Near zero-field, the M value is close to zero, suggesting 

an AF ground state of the SL. By contrast, as the external H increases over 1000 Oe, it is strong enough to reverse 

all LCMO moments, leading to a saturated FM state with high M up to ~3.1 µB/Mn. Note that this saturated M value 

is lower than that of bulk LCMO (3.67 µB/Mn), which originates from the thickness-driven degradation of 

ferromagnetism of the ultrathin LCMO layers.26, 27 Between the AF ground state and the saturated FM state, we 

also observed two additional plateaus located at 610~810 Oe during H increasing (blue branch) and 330~510 Oe 

during H decreasing (red branch), denoted as the IM states. The M plateaus at the IM states are approximately 1/5 

of saturated magnetization (MS). We thus predict that only one LCMO layer moment reverses at the IM state, which 

results in 8 antiparallel-aligned LCMO layers and 2 parallel-aligned LCMO layers. However, the microscopic 

magnetic configuration of the IM state cannot be deduced from the magnetic characterizations. Therefore, we turn 

to the layer resolved magnetic characterization using PNR. 

As marked in Figure 1c, we carried out PNR experiments at 6 stages during the H scans, and the temperature 

was fixed at 50 K during the PNR measurements. Stages I to IV were measured with H increasing from 0 to 5000 

Oe, while stages V and VI were measured with H decreasing from 5000 to 0 Oe. According to the volume 

magnetometry, at stages I and II, the SL is in the AF ground state. At stages III and VI, the SL is in the IM stage. 

At stages IV and V, the SL is in the saturated FM stage. Specular reflectivity is measured as a function of the 

scattering wave vector Qz oriented perpendicular to the sample surface, defined as: 𝑄" =
$%
&
	sin𝜃, where θ is the 

incident angle of the neutron beam and λ is the wavelength of the neutron. Intensity contour plots of the reflected 

intensity in instrumental coordinates θ and λ are shown in Figure S4. Neither an off-specular peak nor featureless 

diffuse scattering in the off-specular area is observed. Hence, we can exclude the possible formation of correlated 

lateral magnetic domains at all the measurement stages.29 

Before analyzing the detailed magnetic structure, we first confirm the collinear nature of magnetic moments in 

the LCMO/CRTO SL. We performed full-polarized PNR measurements at stages I, III, and VI. According to the 

fit results shown in Figure S5, the projection of the magnetization deviating from [010] direction tends to zero. 

Considering the polarizing efficiency of the instrument, the intensity observed in spin-flip channels (R+- and R-+) is 

a parasitic signal. Hence, within the sensitivity of the measurement, all the magnetic moments of the LCMO layers 

are collinearly aligned for all the stages. This is also consistent with the strong IMA of the SL. Based on this 

analysis, we will only show the PNR results from non-spin-flip channels (R++ and R--) in the following part.  

We first look into the simple AF ground states (stage I and II) and saturated FM states (stage IV and V).  PNR 

data and simulation of stages I and IV are presented in Figure 2. And the results for stage II and V are included in 

Figure S6, which is proved to be the same as I and IV, respectively. As shown in Figure 2a,b, both the PNR curves 

measured from stage I and IV show a series of Kiessig fringes and an SLB peak. The SLB peak of FM states (stage 

IV) shares the same Qz value as the first SLB peak observed in the XRR curve (Figure 1c). The Qz position of the 

first SLB peak of stage I is nearly half of the value of stage IV. Within the first Born approximation, the intensity 

of Bragg reflection from a periodic array of 2N layers can be described as I0 ∝ {sin[qd(2N)/2]/sin qd/2}2，where 
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d is the size of a magnetic unit cell.30 The first local maximum of I0 at the SLB peak appears at q = 2π/d. The relative 

position of the SLB peak indicates that the magnetic unit cell at stage I is doubled with respect to stage IV, which 

means LCMO layers ought to be coherently antiparallel-aligned at stage I. We utilized two possible models for 

describing the AF-coupled stage I, distinguished by the direction of the magnetic moment in each layer. In the first 

model, the moment of the top LCMO layer is set to be parallel to the external H (inset of Figure 2a). This model 

provides a reasonably good fit for the experimental results. The optimized fit matches well with the experimental 

PNR curve. We also tested the second model with the topmost LCMO moment antiparallel to the external H (Figure 

S7). This model causes inverse fits of spin-up and spin-down channels, and thus it is improper for describing the 

magnetic configuration of the SL. As shown in Figure 2b, a uniform FM model can fit the PNR curve of stage IV 

well. The depth profiles of nuclear scattering length density (NSLD) and magnetic scattering length density 

(MSLD) are shown in Figure 2c,d. For stage I, the fitted M values in LCMO layers are +3.52 (-0.29, +0.17) µB/Mn 

and -3.25 (-0.38, +0.37) µB/Mn	. For stage IV, the fitted M value is +3.19 (-0.43, +0.47) µB/Mn, close to the MS 

value obtained from M-H loops. Based on these results, the antiparallel (parallel) alignment of LCMO moments in 

the SL at low (high) H is experimentally confirmed by PNR measurements.  

Now we turn to investigate the layer-resolved magnetic structure of the IM states, which appear as plateaus in 

the M-H loop at roughly 1/5 of MS. We first look into the PNR results measured at stage III. At stage III, as shown 

in Figure 3a,b, the main peaks of the PNR curve have the same Qz as the AF ground state. However, the SLB peak 

of the R-- channel shows a peak splitting. This implies a non-regular magnetic structure in depth. 

Based on the analysis of the PNR results, we suggest that the magnetic configuration in stage III could be 

determined by a surface spin-flop (SSF) transition.31 This is an intrinsic magnetic transition for finite SAF systems. 

The antiparallel-aligned layers at the ends of the SL are easier to be reversed by external H because they are 

magnetically coupled with only one neighboring layer. According to this SSF scenario, we speculate that the 

moment of either the topmost or the bottommost LCMO layer is inverted by the external H. From stage I, we have 

determined that only the moment of the bottommost LCMO aligns antiparallel to the external H. Therefore, for 

model 1 at stage III, we hypothesize that the SSF occurs at the bottommost LCMO layer. Figure 3a shows the PNR 

curves and optimized fits curve based on model 1, which shows only a small deviation from the experimental curves 

and leads to a reasonable MSLD profile (Figure 3c). The fitted local M values in bottom-most 2 layers are +3.29 (-

0.56, +0.35) µB/Mn, and in the AFM part they are -3.49 (-0.37, +0.34) and +3.89 (-0.48, +0.11) µB/Mn. For 

comparison, we also applied another model (model 2) where one interior LCMO layer is reversed (the second layer 

from the top, shown in Figure 3b. Compared to the fits using model 1, the optimized fitting curves from model 2 

show much larger deviations from the experimental curves. The corresponding MSLD profile (Figure 3d) also 

changes dramatically: the local M values for the top 2 LCMO layers are close to zero, and the M values of the 

bottom 8 layers are -2.34 (-0.48, +0.09) and +5.00 (-0.53, +0.37) µB/Mn. These values are outside the physically 

reasonable range for the magnetization within LCMO layers. Therefore, these asymmetric and unreasonable fit 

results suggest that model 1 is proper for describing the magnetic configuration in stage III, confirming the situation 

that was expected based on the SSF scenario. In other words, by increasing H, the SSF enables magnetic soliton 

nucleation near the SL/substrate interface. 
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Following similar procedures, we further investigated the magnetic configuration at stage VI. The PNR curve 

taken at stage VI is shown in Figure 3e,f. Although the M values at stages III and VI are almost identical, the PNR 

curves from R++ and R-- channels appear to be inverted. As aforementioned, inversed fits were obtained by model 

2 applied for stage I (Figure S4). Therefore, we set 2 models based on that to simulate the PNR curves of stage VI. 

For model 1, the two bottom LCMO layers are set to be parallel to external H (Figure 3e). And for model 2, the top 

two LCMO layers remain parallel to the external H (Figure 3f). As shown in Figure 3e-h, model 2 can provide a 

much better fit than model 1, thus it appears suitable to describe the magnetic configuration at stage VI. Fits based 

on model 2 result in a more reasonable MSLD profile (Figure 3g,h). These results confirm that the two IM states 

(stage III and VI) have distinct layer-resolved magnetic profiles, though they are indistinguishable from the M-H 

curve. 

 The layer-resolved magnetic profile of the LCMO/CRTO SAF system at the AF ground states, IM states, and 

saturated FM states show a distinct evolution of magnetic configurations in the SL. As summarized in Figure 4. 

The 2 parallel-aligned LCMO layers in IM states can be seen as an achiral soliton embedded in a finite SAF chain.32, 

33 The evolution of magnetic configurations of the SL can be regarded as a vertical propagation of the magnetic 

soliton along the finite SAF. Specifically, as H increases from zero to 470 Oe, the SSF makes the moment of the 

bottom LCMO layer reverses first, leading to nucleation of a magnetic soliton at the bottom of the SAF. By further 

increasing H to 810 Oe and above, a bulk spin-flop (BSF) process aligns all the LCMO layers to H, which can be 

described as a soliton expansion to the whole SAF chain. As H decreases from 5000 to 696 Oe, on the contrary, the 

moments of the top 2 LCMO layers remain unchanged when the moments in the rest layers restore to antiparallel-

alignment. This process can be seen as shrinkage of the magnetic soliton at the top of SAF. By further decreasing 

H, the entire SL restores to AF ground state. Notably, comparing with the AF ground state before the H cycling 

process, the moment of the top LCMO layer becomes reversed. This means that the soliton behavior results in a 

vertical data transfer from the bottom to the top of the SAF. 

The most unique spin-flop step during the H cycling is the soliton shrinkage process. Starting from the saturated 

FM state, as H decreases, the soliton can shrink at either the top or the bottom of the SL and eventually results in 

two AF ground states with different magnetic configurations. Nevertheless, we only observed the top-shrinkage of 

magnetic soliton experimentally. At the final AF state, the bottom LCMO moment remains parallel to the external 

H, while the top LCMO moment eventually reverses and aligns antiparallel to H. Accordingly, we speculate that 

the bottommost LCMO layer has a larger local coercive field, which is determined by both IEC and IMA. Since 

the topmost and bottommost LCMO have the same IEC strength, we suggest that the IMA for the bottommost 

LCMO should be stronger. 

The magnetic anisotropy of manganite is determined by both strain and octahedral distortion patterns. Using in-

plane strain mapping from STEM measurements, we observe that all the LCMO layers are nearly in the same strain 

state (Figure S8). On this basis, we suggest that the stronger IMA of the bottommost LCMO is induced by 

interfacial-coupling of oxygen octahedral distortion with NGO(001) substrate and bottom CRTO layer.34 The 

length-scale of octahedral interfacial coupling is commonly within several nanometers. Hence, its influence should 

be localized within the bottommost LCMO layer.35 The NGO(001) substrate has strong octahedral tilting along the 
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[010] axis. It could pass through the 3 u.c.-thick CRTO layer and transfer into the bottommost LCMO layer. The 

enhanced octahedral tilting can result in a stronger IMA and thus larger coercive field.36 Therefore, as H decreases, 

the bottommost LCMO layer is pinned to the H direction, resulting in the propagation of magnetic soliton from the 

bottom to the top of the SAF. 

 

CONCLUSIONS 

In conclusion, we have revealed the microscopic magnetization reversal mechanism in the LCMO/CRTO SAF 

by PNR characterization. The layer-resolved magnetic reversal process is mediated by nucleation, expansion, and 

shrinkage of a magnetic soliton. This unique evolution of magnetic configurations could be attributed to the 

cooperation of a spatial variation of IMA along the out-of-plane direction and the SSF effect. As a result, vertical 

data transfer is spontaneously realized in this system.  

Our work revealed the high sensitivity of reversal sequence to the strength ratio between IMA and IEC in an all-

oxide SAF. The IMA and IEC in oxide multilayers can be effectively modulated via strain, layer thickness, chemical 

doping, interfacial structure, etc.37 Therefore, it is technically promising to engineer the reversal process of oxide 

SAF systems at a microscopic scale and incorporate them in spintronic devices with designed functionalities.38, 39 

Accordingly, our work paves a new strategy for incorporating all-oxide-based SAF systems in designed 

functionalities and geometry, especially for the 3-dimensional spintronic memory and logic devices with high 

integration level.  
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Figure 1. Structural and magnetic characterizations of LCMO/CRTO SL. (a) XRR curve measured from the 

LCMO/CRTO SL (scatter) together with the fit results (solid line). The inset shows a schematic stacking sequence 

of the SL. (b) HAADF-STEM image taken along the [110] zone-axis. (c) M-H hysteresis loop measured along the 

in-plane easy-axis [010] at 50 K. H-scanning directions are indicated by solid arrows.  The inset shows the M-T 

curve measured under a cooling field of 200 Oe along [010] axis. 
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Figure 2. PNR results measured from the LCMO/CRTO SL at the initial AF ground state and saturated FM state. 

(a, b) PNR data (scatter) and fitting results (solid line) of the (a) AF ground state and (b) saturated FM state. The 

models we used are sketched in the insets. Each arrow represents a layer of LCMO. Depth profiles of NSLD and 

MSLD derived from best fits in (a)(b) are shown in (c)(d). Light blue, yellow, and gray-colored backgrounds 

represent the LCMO layers, CRTO layers, and NGO substrates, respectively.
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Figure 3. PNR results measured from the LCMO/CRTO SL at IM states. (a, b, e, f) PNR data (scatter) and fitting 

results (solid line) of the (a, b) stage III and (e, f) stage VI. The models used are sketched in the insets. Each arrow 

represents a layer of LCMO. Depth profiles of NSLD and MSLD derived from best fits in (a, b, e, f) are shown in 

(c, d, g, h), respectively. Light blue, yellow, and gray-colored backgrounds represent the LCMO layers, CRTO 

layers, and NGO substrates, respectively. 
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Figure 4. Layer-resolved magnetic reversal processes of the LCMO/CRTO SAF. The top-left panel is a schematic 

M-H hysteresis loop. We labeled a series of representative magnetic stages (0 to 5) by triangles, and the field 

scanning directions are labeled by open arrows. The layer-resolved magnetic configurations of these stages are 

shown in the bottom panel. The evolution from stage 2 to 4 can be seen as soliton nucleation, expansion, and 

shrinkage. We also display an alternative magnetic reversal path from saturated FM stage 3 to stage 5. This path 

was proven to be experimentally unaccessible. Therefore, the magnetic moments of all the LCMO layers in stage 

5 are reversed compared to those in stage 1. 
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