000892562 001__ 892562
000892562 005__ 20240712113028.0
000892562 0247_ $$2doi$$a10.1140/epje/s10189-021-00065-2
000892562 0247_ $$2ISSN$$a1292-8941
000892562 0247_ $$2ISSN$$a1292-895X
000892562 0247_ $$2ISSN$$a2429-5299
000892562 0247_ $$2Handle$$a2128/27801
000892562 0247_ $$2altmetric$$aaltmetric:104773137
000892562 0247_ $$2pmid$$a33895914
000892562 0247_ $$2WOS$$aWOS:000643251300001
000892562 037__ $$aFZJ-2021-02161
000892562 041__ $$aEnglish
000892562 082__ $$a530
000892562 1001_ $$0P:(DE-Juel1)169463$$aSukhov, Alexander$$b0$$eCorresponding author
000892562 245__ $$aRegimes of motion of magnetocapillary swimmers
000892562 260__ $$aHeidelberg$$bSpringer$$c2021
000892562 3367_ $$2DRIVER$$aarticle
000892562 3367_ $$2DataCite$$aOutput Types/Journal article
000892562 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1638458124_24421
000892562 3367_ $$2BibTeX$$aARTICLE
000892562 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000892562 3367_ $$00$$2EndNote$$aJournal Article
000892562 520__ $$aThe dynamics of a triangular magnetocapillary swimmer is studied using the lattice Boltzmannmethod. We extend on our previous work, which deals with the self-assembly and a specific type of theswimmer motion characterized by the swimmer’s maximum velocity centred around the particle’s inverseviscous time. Here, we identify additional regimes of motion. First, modifying the ratio of surface tensionand magnetic forces allows to study the swimmer propagation in the regime of significantly lower frequenciesmainly defined by the strength of the magnetocapillary potential. Second, introducing a constant magneticcontribution in each of the particles in addition to their magnetic moment induced by external fields leadsto another regime characterized by strong in-plane swimmer reorientations that resemble experimentalobservations.
000892562 536__ $$0G:(DE-HGF)POF4-121$$a121 - Photovoltaik und Windenergie (POF4-121)$$cPOF4-121$$fPOF IV$$x0
000892562 536__ $$0G:(DE-HGF)POF4-1215$$a1215 - Simulations, Theory, Optics, and Analytics (STOA) (POF4-121)$$cPOF4-121$$fPOF IV$$x1
000892562 536__ $$0G:(GEPRIS)366087427$$aDFG project 366087427 - Magnetokapillare Mikroroboter zum Einfangen und zum Transport von Objekten an Flüssiggrenzflächen $$c366087427$$x2
000892562 588__ $$aDataset connected to DataCite
000892562 7001_ $$0P:(DE-Juel1)186666$$aHubert, Maxime$$b1$$ufzj
000892562 7001_ $$0P:(DE-Juel1)186669$$aGrosjean, Galien$$b2$$ufzj
000892562 7001_ $$0P:(DE-Juel1)186665$$aTrosman, Oleg$$b3$$ufzj
000892562 7001_ $$0P:(DE-Juel1)186664$$aZiegler, Sebastian$$b4$$ufzj
000892562 7001_ $$0P:(DE-HGF)0$$aCollard, Ylona$$b5
000892562 7001_ $$00000-0002-1824-2011$$aVandewalle, Nicolas$$b6
000892562 7001_ $$0P:(DE-Juel1)186752$$aSmith, Ana-Sunčana$$b7$$ufzj
000892562 7001_ $$0P:(DE-Juel1)167472$$aHarting, Jens$$b8
000892562 773__ $$0PERI:(DE-600)2004003-9$$a10.1140/epje/s10189-021-00065-2$$gVol. 44, no. 4, p. 59$$n4$$p59$$tThe European physical journal / E$$v44$$x1292-895X$$y2021
000892562 8564_ $$uhttps://juser.fz-juelich.de/record/892562/files/Regimes%20of%20motion%20of%20magnetocapillary%20swimmers.pdf$$yOpenAccess
000892562 8767_ $$d2021-04-24$$eHybrid-OA$$jDEAL$$lDEAL: Springer
000892562 909CO $$ooai:juser.fz-juelich.de:892562$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC_DEAL$$popen_access$$popenaire
000892562 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)169463$$aForschungszentrum Jülich$$b0$$kFZJ
000892562 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)186666$$aForschungszentrum Jülich$$b1$$kFZJ
000892562 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)186669$$aForschungszentrum Jülich$$b2$$kFZJ
000892562 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)186665$$aForschungszentrum Jülich$$b3$$kFZJ
000892562 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)186664$$aForschungszentrum Jülich$$b4$$kFZJ
000892562 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)186752$$aForschungszentrum Jülich$$b7$$kFZJ
000892562 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)167472$$aForschungszentrum Jülich$$b8$$kFZJ
000892562 9131_ $$0G:(DE-HGF)POF4-121$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vPhotovoltaik und Windenergie$$x0
000892562 9131_ $$0G:(DE-HGF)POF4-121$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1215$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vPhotovoltaik und Windenergie$$x1
000892562 9130_ $$0G:(DE-HGF)POF3-121$$1G:(DE-HGF)POF3-120$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lErneuerbare Energien$$vSolar cells of the next generation$$x0
000892562 9141_ $$y2021
000892562 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-02-03
000892562 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-02-03
000892562 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000892562 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2021-02-03
000892562 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bEUR PHYS J E : 2019$$d2021-02-03
000892562 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-02-03
000892562 915__ $$0StatID:(DE-HGF)3002$$2StatID$$aDEAL Springer$$d2021-02-03$$wger
000892562 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-02-03
000892562 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2021-02-03
000892562 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000892562 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2021-02-03
000892562 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2021-02-03
000892562 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-02-03
000892562 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2021-02-03$$wger
000892562 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-02-03
000892562 915pc $$0PC:(DE-HGF)0000$$2APC$$aAPC keys set
000892562 915pc $$0PC:(DE-HGF)0001$$2APC$$aLocal Funding
000892562 915pc $$0PC:(DE-HGF)0002$$2APC$$aDFG OA Publikationskosten
000892562 915pc $$0PC:(DE-HGF)0113$$2APC$$aDEAL: Springer Nature 2020
000892562 920__ $$lyes
000892562 9201_ $$0I:(DE-Juel1)IEK-11-20140314$$kIEK-11$$lHelmholtz-Institut Erlangen-Nürnberg Erneuerbare Energien$$x0
000892562 9801_ $$aFullTexts
000892562 980__ $$ajournal
000892562 980__ $$aVDB
000892562 980__ $$aI:(DE-Juel1)IEK-11-20140314
000892562 980__ $$aUNRESTRICTED
000892562 980__ $$aAPC
000892562 981__ $$aI:(DE-Juel1)IET-2-20140314