001     892562
005     20240712113028.0
024 7 _ |a 10.1140/epje/s10189-021-00065-2
|2 doi
024 7 _ |a 1292-8941
|2 ISSN
024 7 _ |a 1292-895X
|2 ISSN
024 7 _ |a 2429-5299
|2 ISSN
024 7 _ |a 2128/27801
|2 Handle
024 7 _ |a altmetric:104773137
|2 altmetric
024 7 _ |a 33895914
|2 pmid
024 7 _ |a WOS:000643251300001
|2 WOS
037 _ _ |a FZJ-2021-02161
041 _ _ |a English
082 _ _ |a 530
100 1 _ |a Sukhov, Alexander
|0 P:(DE-Juel1)169463
|b 0
|e Corresponding author
245 _ _ |a Regimes of motion of magnetocapillary swimmers
260 _ _ |a Heidelberg
|c 2021
|b Springer
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1638458124_24421
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The dynamics of a triangular magnetocapillary swimmer is studied using the lattice Boltzmannmethod. We extend on our previous work, which deals with the self-assembly and a specific type of theswimmer motion characterized by the swimmer’s maximum velocity centred around the particle’s inverseviscous time. Here, we identify additional regimes of motion. First, modifying the ratio of surface tensionand magnetic forces allows to study the swimmer propagation in the regime of significantly lower frequenciesmainly defined by the strength of the magnetocapillary potential. Second, introducing a constant magneticcontribution in each of the particles in addition to their magnetic moment induced by external fields leadsto another regime characterized by strong in-plane swimmer reorientations that resemble experimentalobservations.
536 _ _ |a 121 - Photovoltaik und Windenergie (POF4-121)
|0 G:(DE-HGF)POF4-121
|c POF4-121
|x 0
|f POF IV
536 _ _ |a 1215 - Simulations, Theory, Optics, and Analytics (STOA) (POF4-121)
|0 G:(DE-HGF)POF4-1215
|c POF4-121
|x 1
|f POF IV
536 _ _ |a DFG project 366087427 - Magnetokapillare Mikroroboter zum Einfangen und zum Transport von Objekten an Flüssiggrenzflächen
|0 G:(GEPRIS)366087427
|c 366087427
|x 2
588 _ _ |a Dataset connected to DataCite
700 1 _ |a Hubert, Maxime
|0 P:(DE-Juel1)186666
|b 1
|u fzj
700 1 _ |a Grosjean, Galien
|0 P:(DE-Juel1)186669
|b 2
|u fzj
700 1 _ |a Trosman, Oleg
|0 P:(DE-Juel1)186665
|b 3
|u fzj
700 1 _ |a Ziegler, Sebastian
|0 P:(DE-Juel1)186664
|b 4
|u fzj
700 1 _ |a Collard, Ylona
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Vandewalle, Nicolas
|0 0000-0002-1824-2011
|b 6
700 1 _ |a Smith, Ana-Sunčana
|0 P:(DE-Juel1)186752
|b 7
|u fzj
700 1 _ |a Harting, Jens
|0 P:(DE-Juel1)167472
|b 8
773 _ _ |a 10.1140/epje/s10189-021-00065-2
|g Vol. 44, no. 4, p. 59
|0 PERI:(DE-600)2004003-9
|n 4
|p 59
|t The European physical journal / E
|v 44
|y 2021
|x 1292-895X
856 4 _ |u https://juser.fz-juelich.de/record/892562/files/Regimes%20of%20motion%20of%20magnetocapillary%20swimmers.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:892562
|p openaire
|p open_access
|p OpenAPC_DEAL
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)169463
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)186666
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)186669
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)186665
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)186664
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)186752
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)167472
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Materialien und Technologien für die Energiewende (MTET)
|1 G:(DE-HGF)POF4-120
|0 G:(DE-HGF)POF4-121
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Photovoltaik und Windenergie
|x 0
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Materialien und Technologien für die Energiewende (MTET)
|1 G:(DE-HGF)POF4-120
|0 G:(DE-HGF)POF4-121
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Photovoltaik und Windenergie
|9 G:(DE-HGF)POF4-1215
|x 1
913 0 _ |a DE-HGF
|b Energie
|l Erneuerbare Energien
|1 G:(DE-HGF)POF3-120
|0 G:(DE-HGF)POF3-121
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-100
|4 G:(DE-HGF)POF
|v Solar cells of the next generation
|x 0
914 1 _ |y 2021
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2021-02-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-02-03
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2021-02-03
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b EUR PHYS J E : 2019
|d 2021-02-03
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-02-03
915 _ _ |a DEAL Springer
|0 StatID:(DE-HGF)3002
|2 StatID
|d 2021-02-03
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2021-02-03
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2021-02-03
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2021-02-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2021-02-03
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2021-02-03
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2021-02-03
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2021-02-03
915 p c |a APC keys set
|2 APC
|0 PC:(DE-HGF)0000
915 p c |a Local Funding
|2 APC
|0 PC:(DE-HGF)0001
915 p c |a DFG OA Publikationskosten
|2 APC
|0 PC:(DE-HGF)0002
915 p c |a DEAL: Springer Nature 2020
|2 APC
|0 PC:(DE-HGF)0113
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-11-20140314
|k IEK-11
|l Helmholtz-Institut Erlangen-Nürnberg Erneuerbare Energien
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-11-20140314
980 _ _ |a UNRESTRICTED
980 _ _ |a APC
981 _ _ |a I:(DE-Juel1)IET-2-20140314


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21