000892577 001__ 892577
000892577 005__ 20240711101539.0
000892577 0247_ $$2doi$$a10.1016/j.ecmx.2021.100083
000892577 0247_ $$2Handle$$a2128/30161
000892577 0247_ $$2altmetric$$aaltmetric:115490611
000892577 0247_ $$2WOS$$aWOS:000661511100005
000892577 037__ $$aFZJ-2021-02176
000892577 082__ $$a333.7
000892577 1001_ $$0P:(DE-Juel1)180386$$aZier, Michael$$b0$$eCorresponding author
000892577 245__ $$aA Review of Decarbonization Options for the Glass Industry
000892577 260__ $$aAmsterdam$$bElsevier$$c2021
000892577 3367_ $$2DRIVER$$aarticle
000892577 3367_ $$2DataCite$$aOutput Types/Journal article
000892577 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1642000799_21362
000892577 3367_ $$2BibTeX$$aARTICLE
000892577 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000892577 3367_ $$00$$2EndNote$$aJournal Article
000892577 520__ $$aThe glass industry is part of the energy-intensive industry posing a major challenge to fulfill the CO2 reduction targets of the Paris Climate Agreement. The segments of the glass industry, e.g., container or flat glass, are quite diverse and attribute to different glass products with different requirements to product quality and various process options. To address the challenge of decarbonizing the glass industry, firstly, an inventory of current glass products, processes and applied technologies in terms of energy efficiency and CO2 emissions is conducted. Secondly, decarbonization options are identified and structured according to fuel substitution, waste heat recovery and process intensification. Due to the high share of energy-related CO2 emissions, electrical melting and hydrogen combustion, or a combination of both, are the most promising options to decarbonize the glass industry but further research, design adjustments and process improvements are necessary. Furthermore, electricity and hydrogen prices have to decrease or fossil fuels must become more expensive, to be cost-competitive relative to fossil fuels and respective infrastructures have to be constructed or adjusted. Various heat recovery options have great potential for CO2 savings but can be technically challenging or have not yet been considered for techno-economic reasons.
000892577 536__ $$0G:(DE-HGF)POF4-1112$$a1112 - Societally Feasible Transformation Pathways (POF4-111)$$cPOF4-111$$fPOF IV$$x0
000892577 536__ $$0G:(DE-HGF)POF4-1111$$a1111 - Effective System Transformation Pathways (POF4-111)$$cPOF4-111$$fPOF IV$$x1
000892577 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000892577 7001_ $$0P:(DE-Juel1)145405$$aStenzel, Peter$$b1
000892577 7001_ $$0P:(DE-Juel1)168451$$aKotzur, Leander$$b2
000892577 7001_ $$0P:(DE-Juel1)129928$$aStolten, Detlef$$b3
000892577 773__ $$0PERI:(DE-600)3010114-1$$a10.1016/j.ecmx.2021.100083$$gp. 100083 -$$p100083 -$$tEnergy conversion and management: X$$v10$$x2590-1745$$y2021
000892577 8564_ $$uhttps://juser.fz-juelich.de/record/892577/files/Invoice_OAD0000119972.pdf
000892577 8564_ $$uhttps://juser.fz-juelich.de/record/892577/files/1-s2.0-S2590174521000088-main.pdf$$yOpenAccess
000892577 8767_ $$8OAD0000119972$$92021-05-17$$d2021-05-20$$eHybrid-OA$$jZahlung erfolgt$$zBelegnr. 1200167226
000892577 909CO $$ooai:juser.fz-juelich.de:892577$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire
000892577 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)180386$$aForschungszentrum Jülich$$b0$$kFZJ
000892577 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)180386$$aRWTH Aachen$$b0$$kRWTH
000892577 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145405$$aForschungszentrum Jülich$$b1$$kFZJ
000892577 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)168451$$aForschungszentrum Jülich$$b2$$kFZJ
000892577 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129928$$aForschungszentrum Jülich$$b3$$kFZJ
000892577 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)129928$$aRWTH Aachen$$b3$$kRWTH
000892577 9131_ $$0G:(DE-HGF)POF4-111$$1G:(DE-HGF)POF4-110$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1112$$aDE-HGF$$bForschungsbereich Energie$$lEnergiesystemdesign (ESD)$$vEnergiesystemtransformation$$x0
000892577 9131_ $$0G:(DE-HGF)POF4-111$$1G:(DE-HGF)POF4-110$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-1111$$aDE-HGF$$bForschungsbereich Energie$$lEnergiesystemdesign (ESD)$$vEnergiesystemtransformation$$x1
000892577 9141_ $$y2021
000892577 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2020-08-29
000892577 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000892577 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2020-08-29
000892577 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2020-08-29
000892577 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000892577 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Blind peer review$$d2020-08-29
000892577 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2020-08-29
000892577 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2020-08-29
000892577 915__ $$0StatID:(DE-HGF)3101$$2StatID$$aMirror Journal$$d2020-08-29$$wger
000892577 920__ $$lyes
000892577 9201_ $$0I:(DE-Juel1)IEK-3-20101013$$kIEK-3$$lTechnoökonomische Systemanalyse$$x0
000892577 9801_ $$aAPC
000892577 9801_ $$aFullTexts
000892577 980__ $$ajournal
000892577 980__ $$aVDB
000892577 980__ $$aUNRESTRICTED
000892577 980__ $$aI:(DE-Juel1)IEK-3-20101013
000892577 980__ $$aAPC
000892577 981__ $$aI:(DE-Juel1)ICE-2-20101013