001     892577
005     20240711101539.0
024 7 _ |a 10.1016/j.ecmx.2021.100083
|2 doi
024 7 _ |a 2128/30161
|2 Handle
024 7 _ |a altmetric:115490611
|2 altmetric
024 7 _ |a WOS:000661511100005
|2 WOS
037 _ _ |a FZJ-2021-02176
082 _ _ |a 333.7
100 1 _ |a Zier, Michael
|0 P:(DE-Juel1)180386
|b 0
|e Corresponding author
245 _ _ |a A Review of Decarbonization Options for the Glass Industry
260 _ _ |a Amsterdam
|c 2021
|b Elsevier
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1642000799_21362
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The glass industry is part of the energy-intensive industry posing a major challenge to fulfill the CO2 reduction targets of the Paris Climate Agreement. The segments of the glass industry, e.g., container or flat glass, are quite diverse and attribute to different glass products with different requirements to product quality and various process options. To address the challenge of decarbonizing the glass industry, firstly, an inventory of current glass products, processes and applied technologies in terms of energy efficiency and CO2 emissions is conducted. Secondly, decarbonization options are identified and structured according to fuel substitution, waste heat recovery and process intensification. Due to the high share of energy-related CO2 emissions, electrical melting and hydrogen combustion, or a combination of both, are the most promising options to decarbonize the glass industry but further research, design adjustments and process improvements are necessary. Furthermore, electricity and hydrogen prices have to decrease or fossil fuels must become more expensive, to be cost-competitive relative to fossil fuels and respective infrastructures have to be constructed or adjusted. Various heat recovery options have great potential for CO2 savings but can be technically challenging or have not yet been considered for techno-economic reasons.
536 _ _ |a 1112 - Societally Feasible Transformation Pathways (POF4-111)
|0 G:(DE-HGF)POF4-1112
|c POF4-111
|f POF IV
|x 0
536 _ _ |a 1111 - Effective System Transformation Pathways (POF4-111)
|0 G:(DE-HGF)POF4-1111
|c POF4-111
|f POF IV
|x 1
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Stenzel, Peter
|0 P:(DE-Juel1)145405
|b 1
700 1 _ |a Kotzur, Leander
|0 P:(DE-Juel1)168451
|b 2
700 1 _ |a Stolten, Detlef
|0 P:(DE-Juel1)129928
|b 3
773 _ _ |a 10.1016/j.ecmx.2021.100083
|g p. 100083 -
|0 PERI:(DE-600)3010114-1
|p 100083 -
|t Energy conversion and management: X
|v 10
|y 2021
|x 2590-1745
856 4 _ |u https://juser.fz-juelich.de/record/892577/files/Invoice_OAD0000119972.pdf
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/892577/files/1-s2.0-S2590174521000088-main.pdf
909 C O |o oai:juser.fz-juelich.de:892577
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)180386
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 0
|6 P:(DE-Juel1)180386
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)145405
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)168451
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)129928
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 3
|6 P:(DE-Juel1)129928
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Energiesystemdesign (ESD)
|1 G:(DE-HGF)POF4-110
|0 G:(DE-HGF)POF4-111
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Energiesystemtransformation
|9 G:(DE-HGF)POF4-1112
|x 0
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Energiesystemdesign (ESD)
|1 G:(DE-HGF)POF4-110
|0 G:(DE-HGF)POF4-111
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Energiesystemtransformation
|9 G:(DE-HGF)POF4-1111
|x 1
914 1 _ |y 2021
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2020-08-29
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2020-08-29
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2020-08-29
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Blind peer review
|d 2020-08-29
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2020-08-29
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2020-08-29
915 _ _ |a Mirror Journal
|0 StatID:(DE-HGF)3101
|2 StatID
|d 2020-08-29
|w ger
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-3-20101013
|k IEK-3
|l Technoökonomische Systemanalyse
|x 0
980 1 _ |a APC
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-3-20101013
980 _ _ |a APC
981 _ _ |a I:(DE-Juel1)ICE-2-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21