001     892583
005     20210623133448.0
024 7 _ |a 2128/27806
|2 Handle
037 _ _ |a FZJ-2021-02180
100 1 _ |a Mohanakumar, Shilpa
|0 P:(DE-Juel1)179461
|b 0
111 2 _ |a Bunsentagung 2021
|c Juelich
|d 2021-05-10 - 2021-05-12
|w Germany
245 _ _ |a How Hofmeister series influence the thermodiffusion of salts in water?
260 _ _ |c 2021
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a CONFERENCE_POSTER
|2 ORCID
336 7 _ |a Output Types/Conference Poster
|2 DataCite
336 7 _ |a Poster
|b poster
|m poster
|0 PUB:(DE-HGF)24
|s 1621337167_27695
|2 PUB:(DE-HGF)
|x Other
520 _ _ |a Thermal gradients induce a motion of solute molecules towards hot or cold regions. The motion of solutes in a solvent induced by a thermal gradient is termed thermodiffusion. Soret coefficient is used to quantify the ratio of the established concentration gradient to the thermal gradient. This has become an important tool to monitor protein-ligand binding , as it is very sensitive to the nature of solute-water interactions. Buffers, which are used to stabilize the proteins, are multicomponent mixtures with different kinds of salts. Hence to obtain a better understanding of protein-ligand systems, the first step is the investigation of salt solutions. We investigated aqueous solutions of five potassium salts: potassium chloride, potassium bromide, potassium thiocyanate, potassium acetate and potassium carbonate where the corresponding anions cover the full Hofmeister range. We study the thermophoresis of all salt solutions between 15 to 45oC in a molality range between 1 – 5 mol/kg using thermal diffusion forced Rayleigh scattering. We examine, in particular, whether the correlations found for non-ionic solutes are carried over to ionic solutes. Our results are discussed in the context with the ionic and hydrogen bonding contributions to thermophoresis. This study shows how sensitive the thermophoretic phenomenon is to the ion species and its position in the Hofmeister series and how a change of the ion influences thermophoretic properties.
536 _ _ |a 524 - Molecular and Cellular Information Processing (POF4-524)
|0 G:(DE-HGF)POF4-524
|c POF4-524
|x 0
|f POF IV
700 1 _ |a Wiegand, Simone
|0 P:(DE-Juel1)131034
|b 1
|e Corresponding author
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/892583/files/S.Mohanakumar_Poster.PNG
856 4 _ |y OpenAccess
|x icon
|u https://juser.fz-juelich.de/record/892583/files/S.Mohanakumar_Poster.gif?subformat=icon
856 4 _ |y OpenAccess
|x icon-1440
|u https://juser.fz-juelich.de/record/892583/files/S.Mohanakumar_Poster.jpg?subformat=icon-1440
856 4 _ |y OpenAccess
|x icon-180
|u https://juser.fz-juelich.de/record/892583/files/S.Mohanakumar_Poster.jpg?subformat=icon-180
856 4 _ |y OpenAccess
|x icon-640
|u https://juser.fz-juelich.de/record/892583/files/S.Mohanakumar_Poster.jpg?subformat=icon-640
909 C O |o oai:juser.fz-juelich.de:892583
|p openaire
|p open_access
|p VDB
|p driver
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)179461
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)131034
913 0 _ |a DE-HGF
|b Key Technologies
|l BioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences
|1 G:(DE-HGF)POF3-550
|0 G:(DE-HGF)POF3-551
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-500
|4 G:(DE-HGF)POF
|v Functional Macromolecules and Complexes
|x 0
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-524
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Molecular and Cellular Information Processing
|x 0
914 1 _ |y 2021
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
920 1 _ |0 I:(DE-Juel1)IBI-4-20200312
|k IBI-4
|l Biomakromolekulare Systeme und Prozesse
|x 0
980 _ _ |a poster
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IBI-4-20200312
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21