000892585 001__ 892585
000892585 005__ 20220930130317.0
000892585 0247_ $$2doi$$a10.1002/aelm.202000858
000892585 0247_ $$2Handle$$a2128/27866
000892585 0247_ $$2WOS$$aWOS:000628872000001
000892585 037__ $$aFZJ-2021-02182
000892585 082__ $$a621.3
000892585 1001_ $$0P:(DE-Juel1)167225$$aKutovyi, Yurii$$b0
000892585 245__ $$aBoosting the Performance of Liquid‐Gated Nanotransistor Biosensors Using Single‐Trap Phenomena
000892585 260__ $$aWeinheim$$bWiley-VCH Verlag GmbH & Co. KG$$c2021
000892585 3367_ $$2DRIVER$$aarticle
000892585 3367_ $$2DataCite$$aOutput Types/Journal article
000892585 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1622135283_23532
000892585 3367_ $$2BibTeX$$aARTICLE
000892585 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000892585 3367_ $$00$$2EndNote$$aJournal Article
000892585 520__ $$aIn small-area transistors, the trapping/detrapping of charge carriers to/from a single trap located in the gate oxide near the Si/SiO2 interface leads to the discrete switching of the transistor drain current, known as single-trap phenomena (STP), resulting in random telegraph signals. Utilizing the STP-approach, liquid-gated (LG) nanowire (NW) field-effect transistor biosensors have recently been proposed for ultimate biosensing with enhanced sensitivity. In this study, the impact of channel doping concen-tration on the capture process of charge carriers by a single trap in LG silicon NW structures is investigated. A significant effect of the channel doping concentration on the single-trap dynamic is revealed. To under-stand the mechanism behind unusual capture time behavior compared to that predicted by the classical Shockley–Read–Hall theory, an analytical model based on the rigorous description of the additional energy barrier that charge carriers have to overcome to be captured by the trap at dif-ferent gate voltages is developed. The enhancement of the sensitivity for single-trap phenomena biosensing with an increase of the channel doping concentration is explained within the framework of the proposed analytical model. The results open prospects for the development of advanced single trap-based devices.
000892585 536__ $$0G:(DE-HGF)POF4-524$$a524 - Molecular and Cellular Information Processing (POF4-524)$$cPOF4-524$$fPOF IV$$x0
000892585 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000892585 7001_ $$0P:(DE-HGF)0$$aPiatnytsia, Volodymyr$$b1
000892585 7001_ $$0P:(DE-Juel1)171802$$aBoichuk, Nazarii$$b2$$ufzj
000892585 7001_ $$0P:(DE-Juel1)164241$$aZadorozhnyi, Ihor$$b3
000892585 7001_ $$0P:(DE-Juel1)176824$$aLi, Jie$$b4
000892585 7001_ $$0P:(DE-HGF)0$$aPetrychuk, Mykhailo$$b5
000892585 7001_ $$0P:(DE-Juel1)128738$$aVitusevich, Svetlana$$b6$$eCorresponding author
000892585 773__ $$0PERI:(DE-600)2810904-1$$a10.1002/aelm.202000858$$gVol. 7, no. 4, p. 2000858 -$$n4$$p2000858 -1-10$$tAdvanced electronic materials$$v7$$x2199-160X$$y2021
000892585 8564_ $$uhttps://juser.fz-juelich.de/record/892585/files/aelm.202000858.pdf$$yOpenAccess
000892585 8767_ $$d2021-02-01$$eAPC$$jDEAL$$lDeposit: Wiley
000892585 909CO $$ooai:juser.fz-juelich.de:892585$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire$$popenCost$$pdnbdelivery
000892585 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)167225$$aForschungszentrum Jülich$$b0$$kFZJ
000892585 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)171802$$aForschungszentrum Jülich$$b2$$kFZJ
000892585 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128738$$aForschungszentrum Jülich$$b6$$kFZJ
000892585 9130_ $$0G:(DE-HGF)POF3-523$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Configuration-Based Phenomena$$x0
000892585 9131_ $$0G:(DE-HGF)POF4-524$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vMolecular and Cellular Information Processing$$x0
000892585 9141_ $$y2021
000892585 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-01-28
000892585 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-01-28
000892585 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
000892585 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bADV ELECTRON MATER : 2019$$d2021-01-28
000892585 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bADV ELECTRON MATER : 2019$$d2021-01-28
000892585 915__ $$0StatID:(DE-HGF)3001$$2StatID$$aDEAL Wiley$$d2021-01-28$$wger
000892585 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-28
000892585 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-01-28
000892585 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000892585 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2021-01-28
000892585 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-28
000892585 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-01-28
000892585 920__ $$lyes
000892585 9201_ $$0I:(DE-Juel1)IBI-3-20200312$$kIBI-3$$lBioelektronik$$x0
000892585 9801_ $$aFullTexts
000892585 980__ $$ajournal
000892585 980__ $$aVDB
000892585 980__ $$aUNRESTRICTED
000892585 980__ $$aI:(DE-Juel1)IBI-3-20200312
000892585 980__ $$aAPC