001     892585
005     20220930130317.0
024 7 _ |a 10.1002/aelm.202000858
|2 doi
024 7 _ |a 2128/27866
|2 Handle
024 7 _ |a WOS:000628872000001
|2 WOS
037 _ _ |a FZJ-2021-02182
082 _ _ |a 621.3
100 1 _ |a Kutovyi, Yurii
|0 P:(DE-Juel1)167225
|b 0
245 _ _ |a Boosting the Performance of Liquid‐Gated Nanotransistor Biosensors Using Single‐Trap Phenomena
260 _ _ |a Weinheim
|c 2021
|b Wiley-VCH Verlag GmbH & Co. KG
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1622135283_23532
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a In small-area transistors, the trapping/detrapping of charge carriers to/from a single trap located in the gate oxide near the Si/SiO2 interface leads to the discrete switching of the transistor drain current, known as single-trap phenomena (STP), resulting in random telegraph signals. Utilizing the STP-approach, liquid-gated (LG) nanowire (NW) field-effect transistor biosensors have recently been proposed for ultimate biosensing with enhanced sensitivity. In this study, the impact of channel doping concen-tration on the capture process of charge carriers by a single trap in LG silicon NW structures is investigated. A significant effect of the channel doping concentration on the single-trap dynamic is revealed. To under-stand the mechanism behind unusual capture time behavior compared to that predicted by the classical Shockley–Read–Hall theory, an analytical model based on the rigorous description of the additional energy barrier that charge carriers have to overcome to be captured by the trap at dif-ferent gate voltages is developed. The enhancement of the sensitivity for single-trap phenomena biosensing with an increase of the channel doping concentration is explained within the framework of the proposed analytical model. The results open prospects for the development of advanced single trap-based devices.
536 _ _ |a 524 - Molecular and Cellular Information Processing (POF4-524)
|0 G:(DE-HGF)POF4-524
|c POF4-524
|x 0
|f POF IV
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Piatnytsia, Volodymyr
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Boichuk, Nazarii
|0 P:(DE-Juel1)171802
|b 2
|u fzj
700 1 _ |a Zadorozhnyi, Ihor
|0 P:(DE-Juel1)164241
|b 3
700 1 _ |a Li, Jie
|0 P:(DE-Juel1)176824
|b 4
700 1 _ |a Petrychuk, Mykhailo
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Vitusevich, Svetlana
|0 P:(DE-Juel1)128738
|b 6
|e Corresponding author
773 _ _ |a 10.1002/aelm.202000858
|g Vol. 7, no. 4, p. 2000858 -
|0 PERI:(DE-600)2810904-1
|n 4
|p 2000858 -1-10
|t Advanced electronic materials
|v 7
|y 2021
|x 2199-160X
856 4 _ |u https://juser.fz-juelich.de/record/892585/files/aelm.202000858.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:892585
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)167225
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)171802
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)128738
913 0 _ |a DE-HGF
|b Key Technologies
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-520
|0 G:(DE-HGF)POF3-523
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-500
|4 G:(DE-HGF)POF
|v Controlling Configuration-Based Phenomena
|x 0
913 1 _ |a DE-HGF
|b Key Technologies
|l Natural, Artificial and Cognitive Information Processing
|1 G:(DE-HGF)POF4-520
|0 G:(DE-HGF)POF4-524
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-500
|4 G:(DE-HGF)POF
|v Molecular and Cellular Information Processing
|x 0
914 1 _ |y 2021
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2021-01-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2021-01-28
915 _ _ |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
|0 LIC:(DE-HGF)CCBYNCND4
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ADV ELECTRON MATER : 2019
|d 2021-01-28
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b ADV ELECTRON MATER : 2019
|d 2021-01-28
915 _ _ |a DEAL Wiley
|0 StatID:(DE-HGF)3001
|2 StatID
|d 2021-01-28
|w ger
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-01-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2021-01-28
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2021-01-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-01-28
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2021-01-28
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IBI-3-20200312
|k IBI-3
|l Bioelektronik
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IBI-3-20200312
980 _ _ |a APC


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21