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Highlight
We review how phytopathogenic bacteria interfere with innate plant immunity and cell death using

effector proteases directly secreted into the cytosol by type three secretion systems.

Abstract

Pathogens and their hosts are engaged in an evolutionary arms race. Pathogen-derived effectors promote
virulence by targeting components of a host’s innate immune system, while hosts have evolved proteins
that sense effectors and trigger a pathogen-specific immune response. Many bacterial effectors are
translocated into host cells using type Il secretion systems. Type |l effector proteases irreversibly modify
host proteins by cleavage of peptide bonds and are prevalent among both plant and animal bacterial
pathogens. In plants, the study of model effector proteases has yielded important insights into the
virulence mechanisms employed by pathogens to overcome their host’s immune response, as well as into
the mechanisms deployed by their hosts to detect these effector proteases and counteract their effects.
In recent years, the study of a larger number of effector proteases, across a wider range of pathogens,
has yielded novel insights into their functions and recognition. One key limitation has remained the lack
of methods to detect protease cleavage at the proteome-wide level. We review known substrates and
mechanisms of plant pathogen type Il effector proteases, compare their functions to those of known type
Il effector proteases of mammalian pathogens. Finally, we discuss approaches to uncover their function

on a system-wide level.

Keywords
Degradomics, Effector Proteases, Pseudomonas syringae, Host/pathogen interactions, Type Ill Secretion

System, Regulated Cell Death, Hypersensitive Response
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Introduction

Plants have evolved multifaceted innate immune responses that are sufficient to overcome most
pathogen challenges. This sophisticated and robust innate immune system comprises two interconnected
tiers (Jones et al., 2016). The first tier, known as pattern-triggered immunity (PTI) relies on the detection
of highly-conserved pathogen molecules or ‘PAMPs’ (pathogen associated molecular patterns; e.g.
bacterial flagellin or its 22-amino acid peptide flg22) at the cell-surface by Pattern Recognition Receptors
(PRRs) that subsequently activate the immune response. Alternatively, some PRRs recognize ‘DAMPs’
(damage-associated molecular patterns), a variety of host-derived factors that commonly arise
following pathogen attack, such as extracellular ATP and protein or cell wall fragments (Hou et
al., 2019; Yamaguchi and Huffaker, 2011). PTI signals originating at the plasma membrane (PM) are
transduced downstream by intracellular kinases and secondary messengers to activate the hallmark
features of PTI (Dodds and Rathjen, 2010). These include transcriptional reprogramming to activate
defence-related genes, stomatal closure to limit pathogen entry, the generation of reactive oxygen
species (ROS) toxic to microbes and callose deposition to reinforce the cell wall (Bigeard et al., 2015; Li et

al., 2016). Thus, PTI provides protection against a broad spectrum of pathogens.

To counteract these defences, pathogens secrete repertoires of proteins known as ‘effectors’ to interfere
with PTI and promote infection. Notably, bacterial pathogens may utilize the type Il secretion system
(T3SS) to deliver effectors directly into the cytosol of host cells where they can suppress key immune
regulators by a variety of mechanisms (Khan et al., 2018; Langin et al., 2020; Toruno et al., 2016).
However, while pathogen-derived effectors target specific components of a host’s PTI response to
promote pathogenicity, adapted hosts have evolved proteins - typically members of the polymorphic
nucleotide binding/leucine-rich repeat (NLR) family - that sense effectors and trigger a pathogen-specific
immune response, termed effector-triggered immunity (ETI) (Cui et al., 2015; Toruno et al., 2016). ETl is
often, but not necessarily, associated with a localized form of regulated cell death termed hypersensitive
response (HR) (Laflamme et al., 2020; Pitsili et al., 2020). Several mechanisms of effector detection by
NLRs have been described, including direct binding interactions as well as ‘indirect’ surveillance of effector
activities (Cui et al., 2015; Kourelis and van der Hoorn, 2018). The outcome of host/pathogen interactions
thus depends on the set of effectors expressed by a given pathogen and the presence or absence of

cognate NLRs in the host, resulting in an evolutionary arms race between plant pathogens and their hosts.

Over the past four decades, the model plant pathogen Pseudomonas syringae has played key roles in the

discovery of effector function and ETI regulation (Xin et al., 2018). Over 14,600 putative T3S effectors



88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104

105
106
107
108
109
110

111

112

113
114
115
116
117

(T3SEs) have been identified in strains of P. syringae (Dillon et al., 2019), several of which function as
proteases that target components of PTI to enhance virulence (Figaj et al., 2019; Hou et al., 2018). An
outstanding feature of proteases among other effectors is the ability to interfere with host processes using
proteolysis as a site-specific, irreversible post-translational protein modification (Marshall et al., 2017). As
is the case with other proteases, T3SE proteases belong to several mechanistic classes that are classified
into different clans and families depending on the structure and sequence similarity of their peptidase
domain (Rawlings et al., 2018), with cysteine and threonine proteases found in the effector protease
repertoire of P. syringae (Table 1). Once inside the host cell, T3SE proteases cleave peptide bonds within
proteins to inactivate immune functions, activate latent functions or expose recognition sites for rapid
degradation by the host ubiquitin-proteasome system (UPS) (Dissmeyer et al., 2018; Ravalin et al., 2019).
Notably, several protease families are conserved among bacterial pathogens that infect animals and
plants (Dowen et al., 2009; Nimchuk et al., 2007; Shao et al., 2002), highlighting their effectiveness at
targeting eukaryotic innate immune responses. Remarkably, T3SE repertoires also include proteolytic
enzymes that interfere with UPS-mediated proteolytic signaling in the host by cleaving isopeptide bonds
within chains of poly-ubiquitin or ubiquitin-like proteins (e.g. SUMO) (Pruneda et al., 2016; Xiang et al.,
2020). Here we focus on T3SE proteases, but for a detailed discussion of effector-mediated manipulation

of the host proteolytic machinery we refer the readers to an excellent recent review (Langin et al., 2020).

In this review, we summarize the current knowledge on T3SE proteases in phytopathogenic bacteria with
a focus on (i) their mode of action as virulence factors and the co-evolution with cognate plant NLRs; (ii)
their role in the regulation of regulated cell death both in plants and animals; and (iii) their evolutionary
conservation and diversity across plant and animal pathogens. Finally, considering the state of the field
and the urgent need to identify proteome-wide targets of T3SE proteases, we also briefly discuss mass

spectrometry-based methods that may overcome some of the current limitations (Box1).

Suppression of PTI by P. syringae T3SE proteases

As indicated above, effector proteases act primarily as virulence factors that dampen innate immune
responses in plants. Plants recognize flagellin fragments such as a 22-amino acid residue peptide flg22 via
the PM-bound receptor-like kinase (RLK) FLAGELLIN-SENSITIVE2 (FLS2). In the absence of a pathogen
threat, FLS2 constitutively associates with the PBS1-like (PBL) family VII receptor-like cytoplasmic kinase
(RLCK) BOTRYTIS-INDUCED KINASE1 (BIK1) at the PM (Lu et al., 2010). Upon flagellin detection, FLS2 forms
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a co-receptor complex with fellow RLK BRI1 ASSOCIATED RECEPTOR KINASE1 (BAK1) , triggering a series
of phosphorylation events that initiate PTI signaling (Bigeard et al., 2015). Phosphorylated BIK1 dissociates
from the receptor complex and activates downstream immune responses including influx of Ca?* (Tian et
al., 2019) and ROS production (Kadota et al., 2014). Both BAK1 and BIK1 are targets of effector proteases

secreted by P. syringae to impede early PTI signals, as well as downstream signaling pathways (Figure 1).

BAK1 can be cleaved by P. syringae HopB1 (Figure 1 and Table 1) (Figaj et al., 2019; Li et al., 2016). When
expressed directly in protoplasts, HopB1 constitutively interacts with FLS2 (Li et al., 2016). After flg22-
induced formation of the FLS2-BAK1 co-receptor complex, BAK1 is phosphorylated at Thr455 prompting
its cleavage by HopB1 between Arg297 and Gly298 (Li et al., 2016). HopB1 cleavage of BAK1 impairs flg22-
triggered immune responses (Wu et al., 2020) and disrupts downstream signals including a reduction in

the levels of phosphorylated BIK1 leading to increased P. syringae growth (Li et al., 2016).

BIK1 is itself targeted by AvrPphB (also known as HopAR1) (Zhang et al., 2010) (Figure 1 and Table 1).
AvrPphB cleaves several PBL kinases including BIK1, PBS1, PBL1, PBL2 and PBL3 (Nimchuk et al., 2007;
Shao et al., 2003; Zhang et al., 2010). To access BIK1, AvrPphB must be targeted to the PM. Following its
delivery in the host cell, AvrPphB first undergoes autoproteolytic cleavage in planta to expose embedded
residues Gly63 and Cys64 at the N-terminus of the larger (C-terminal) AvrPphB fragment (Nimchuk et al.,
2000; Puri et al., 1997). Processed AvrPphB is myristoylated and palmitoylated in vivo at these N-terminal
sites, prompting its translocation to the PM (Dowen et al., 2009). Expression of transgenic AvrPphB in
Arabidopsis inhibits PTI responses triggered by multiple PAMPs including flg22, elf18 (derived from
bacterial Elongation Factor-Tu) and fungal chitin (Zhang et al., 2010). Abolition of AvrPphB protease
activity by a Cys98Ser substitution significantly reduces its suppression of the flg22-inducible marker gene
FLG22-INDUCED RECEPTOR-LIKE KINASE1 (FRK1), indicating that protease activity is required for its

immunosuppressive function (Shao et al., 2003; Zhang et al., 2010).

Besides direct regulation by kinases or secondary messengers like reactive oxygen species (ROS) and Ca%,
phytohormones are major regulators of transcriptional reprogramming during PTI. The principal immune
hormones ethylene (ET), jasmonic acid (JA) and salicylic acid (SA) accumulate in response to flg22 (Berens
et al., 2017). Each hormone controls an extensive network of response genes. For example, over 3,600
Arabidopsis genes are responsive to JA (Hickman et al., 2017). In general, the SA network is particularly
effective against biotrophic or hemi-biotrophic pathogens (like P. syringae), while JA and ET are associated

with the response to necrotrophs (Glazebrook, 2005). The contrasting roles played by these hormones
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can lead to complex signaling interactions, typified by a mutual antagonism between the SA and JA
pathways (Berens et al., 2017). These interactions are subject to manipulation by effectors to favour

pathogen virulence.

HopX1 from P. syringae pv. tabaci cleaves JASMONATE-ZIM DOMAIN (JAZ) proteins (Gimenez-lbanez et
al., 2014), which function as major repressors of JA-responsive transcription factors (Pauwels et al., 2010;
Pauwels and Goossens, 2011) (Figure 1 and Table 1). In planta, HopX1 accumulates in the cytoplasm and
nucleus and interacts with the conserved zinc-finger inflorescence meristem (ZIM) domain of JAZ
repressors leading to their elimination with no detectable fragments remaining (Gimenez-lbanez et al.,
2014). The HopX1 catalytic residue Cys179 is required for degradation of JAZ5 in vitro (Gimenez-lbanez et
al., 2014), indicating that JAZ proteins are targeted directly for proteolysis. Ectopic expression of HopX1
in Arabidopsis alleviates repression of JA-response genes while reducing the expression of SA-inducible
marker genes important for combatting P. syringae infection (Gimenez-lbanez et al., 2014). The recently
characterized homolog RipE1 from R. solanacearum also promotes the degradation of JAZ repressors with
similar outcomes (Nakano and Mukaihara, 2019). The activity of HopX1 during infection is comparable to
the effect of coronatine, a structural mimic of JA-lle secreted by P. syringae to activate the JA pathway
(Gimenez-lbanez et al., 2014; Zheng et al., 2012), highlighting the diverse strategies employed by

pathogens to overcome hormonal regulation of the host immune response.

The P. syringae T3S papain-like cysteine protease AvrRpt2 cleaves nitrate-induced (NOI) domain-
containing proteins, including RPM1-INTERACTING PROTEIN4 (RIN4) (Axtell et al., 2003; Chisholm et al.,
2005; Eschen-Lippold et al., 2016; Goslin et al., 2019; Kim et al., 2005a) (Figure 1 and Table 1). RIN4 is a
PM-localized central immune regulator that generally inhibits PTI and is targeted by multiple effectors
(Kim et al., 2005b; Ray et al., 2019; Toruno et al., 2016). Less is known about the function of other NOI-
domain containing proteins that are also targeted by AvrRpt2 (Eschen-Lippold et al., 2016). An important
aspect of AvrRpt2 function is its activation by the cyclophilin/peptidyl-prolyl isomerase ROC1 in
Arabidopsis (Coaker et al., 2005; Coaker et al., 2006; Figaj et al., 2019). Activated AvrRpt2 then undergoes
autoproteolytic processing and is likely myristoylated at Gly72 to facilitate co-localization with RIN4 at the

PM (Coaker et al., 2005; Coaker et al., 2006; Kim et al., 2005a).

AvrRpt2 cleavage of RIN4 yields two fragments termed ACP2 (AvrRpt2-cleavage product 2) and ACP3
containing the majority of the N-terminal and C-terminal NOI domains respectively (Toruno et al., 2016).

Although the elimination of a negative immune regulator by pathogen proteases appears counter-
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productive, the ACP2 and ACP3 fragments were found to hyperactively suppress PTl in comparison with
the full-length protein (Ray et al., 2019; Toruno et al., 2016) (Figure 1). Both ACP2 and ACP3 appear to be
short-lived in planta but the exact mechanism of their removal is unclear (Axtell et al., 2003; Axtell and
Staskawicz, 2003; Goslin et al., 2019). Fragments generated by AvrRpt2 cleavage of several other NOI
proteins (NOI1, NOI6 and NOI11) are substrates for the N-degron pathway (Goslin et al., 2019), a ubiquitin-
dependent protein degradation pathway that targets substrate proteins for degradation based on the
identity of their N-terminal residue (Dissmeyer et al., 2018; Holdsworth et al., 2020). It remains unclear
whether these NOI proteins or their cleavage products exert any functional influence on PTI or are merely
inadvertent targets of AvrRpt2, with RIN4 as the operative target. However, AvrRpt2 also appears to
promote virulence of P. syringae independently of RIN4 (Lim and Kunkel, 2004) suggesting the existence
of other targets that participate in the immune response. Notably, it has been reported that AvrRpt2 also
stimulates turnover of Aux/IAA negative regulators to enhance auxin signaling during infection, although
direct cleavage by AvrRpt2 was not detected in this case (Cui et al., 2013). Similarly, AvrRpt2 has been
shown to disrupt MAPK signaling by suppressing the flg22-induced phosphorylation of MPK4 and MPK11
in Arabidopsis. However, the identity of the AvrRpt2 substrate(s) responsible for this down-regulation

remain unknown (Eschen-Lippold et al., 2016).

Detection of effector protease activity in plants

Recognition of AvrPphB protease activity

It was first reported by (Simonich and Innes, 1995) that Arabidopsis plants carrying the gene RESISTANCE
TO P. SYRINGAES5 (RPS5) were resistant to P. syringae pv. tomato DC3000 (Pto) strains carrying AvrPphB
(then known as AvrPph3). Subsequent investigations revealed that RPS5-mediated resistance requires
AvrPphB cleavage of PBS1 (Shao et al., 2003; Zhang et al., 2010). Although more recent studies have
revealed that AvrPphB also cleaves other PBS1-like proteins like BIK1 (Zhang et al., 2010), only cleavage
of PBS1 is sufficient to trigger ETI (Ade et al., 2007) (Figure 2). Considering that BIK1 plays a major role in
PTI signaling while PBS1 makes a relatively minor contribution (Zhang et al., 2010), PBS1 has been
described as a ‘decoy’ target guarded by RPS5, while BIK1 (and possibly other PBL kinases) are the
‘operative’ targets of AvrPphB (Pottinger and Innes, 2020; Sun et al., 2017). According to the current
model of RPS5 activation, PBS1 interacts with the N-terminal coiled coil (CC) domain of RPS5 in pathogen-

free conditions, maintaining RPS5 in an inactive, ADP-bound state (Ade et al., 2007; Qi et al., 2014). Upon
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infection, cleavage of PBS1 by AvrPphB induces a structural change in RPS5, permitting the exchange of

ADP for ATP and thereby activating ETI signaling and HR (Ade et al., 2007).

Recent studies have revealed that AvrPphB protease activity is also recognized by other plant species
including barley and wheat (Carter et al., 2019; Sun et al., 2017). Barley contains two PBS1 orthologs that
can be cleaved by AvrPphB, leading to the activation of defence responses by the NLR AvrPphB Responsel
(PBR1) (Carter et al., 2019). The conservation of PBS1 can be exploited to expand the scope of RPS5-
mediated ETI across different plant species and their specific pathogen interactors (Kim et al., 2016). For
example, expressing a modified soybean PBS1 ortholog containing a motif recognizable by the Nla
protease of the soybean mosaic virus (SMV) in place of the standard AvrPphB cleavage site confers

immunity to the virus (Helm et al., 2019; Pottinger and Innes, 2020).
Recognition of AvrRpt2 cleavage of RIN4

Another T3SE protease for which NLR-mediated recognition has been dissected in detail is AvrRpt2. The
relationship between AvrRpt2 and the cognate Arabidopsis CC-NLR RPS2 was first discovered in the mid-
90s (Bent et al., 1994; Innes et al., 1993; Mindrinos et al., 1994). The activation of RPS2-mediated defences
by AvrRpt2 was later correlated with the elimination of RIN4 (Axtell and Staskawicz, 2003). In the absence
of pathogen challenge, RIN4 physically associates with RPS2, maintaining it in an inactive state to preclude
ETI signaling. After AvrRpt2 cleavage, RIN4 fragments are unable to maintain an interaction with RPS2 and
can no longer abrogate RPS2-dependent HR (Coaker et al., 2005; Day et al., 2005; Day et al., 2006) (Figure
2). However, elimination of RIN4 alone is not sufficient for AvrRpt2-induced activation of RPS2 (Toruno et
al., 2016). NONSPECIFIC DISEASE RESISTANCE1 (NDR1) is a PM-anchored immune regulator required for
the full activation of multiple NLRs including RPS5 and RPS2 (Coppinger et al., 2004). A physical interaction
between NDR1 and RIN4 is required for RPS2 activation by AvrRpt2 (Day et al., 2006). Unlike RPS2, NDR1
can also interact with the ACP3 fragment of RIN4 after cleavage by AvrRpt2 (Day et al., 2006). Although
the exact mechanism underlying the role of NDR1 remains unknown, it has been proposed that its

interaction with RIN4 may protect RPS2 from negative regulation during infection(Day et al., 2006).

AvrRpt2-induced defence responses have been described in other plant/pathogen species contexts. The
MR5 CC-NLR from wild apple recognizes an AvrRpt2 homolog from the fireblight pathogen Erwinia
amylovora based on its cleavage of apple MdRIN4 (Broggini et al., 2014; Prokchorchik et al., 2020; Vogt et
al., 2013). Unlike the AtRIN4-RPS2 complex, MdRIN4 does not appear to inhibit MR5 auto-activation
(Prokchorchik et al., 2020). Rather, the MdRIN4 ACP3 cleavage fragment generated by AvrRpt2 activates
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MR5 (Prokchorchik et al., 2020). Ptrl is a CC-NLR identified in the tomato-like nightshade Solanum
lycopersicoides that also confers resistance to P. syringae expressing AvrRpt2 (Mazo-Molina et al., 2020).
Ptrl recognition of AvrRpt2 variants correlates with their ability to eliminate tomato RIN4 proteins (Mazo-
Molina et al., 2019). Functional Ptrl orthologs conferring resistance to AvrRpt2 also occur in N.
benthamiana and potato (Mazo-Molina et al., 2020; Mazo-Molina et al., 2019). Based on the sequential
and mechanistic diversity of RPS2, MR5 and Ptrl, these NLRs have likely arisen by convergent evolution

to detect AvrRpt2 (Mazo-Molina et al., 2020; Prokchorchik et al., 2020; Toruno et al., 2016).
Detection of HopX1 by ZAR1

A recent systematic study of ETI-inducing effectors revealed that the Arabidopsis CC-type NLR HopZ
ACTIVATED RESISTANCE1 (ZAR1) confers immunity against a range of effectors including the HopX1 family
(Laflamme et al., 2020) (Figure 2). HopX1-induced activation of ZAR1 also requires the RLCKs HOPZ-ETI-
DEFICIENT1 (ZED1) and SUPPRESSOR OF ZED1-D1 (SZE1), although cleavage of neither ZED1 nor SZE1 was
detected (Martel et al., 2020). As yet, no functional relationship has been established between HopX1-
mediated cleavage of JAZ proteins and its activation of ZAR1 (Gimenez-lbanez et al., 2014; Martel et al.,
2020). Notably, E. amylovora HopX1 contributes to the onset of HR in cultivated tobacco (Nicotiana
tabacum), while it suppresses it in N. benthamiana (Bocsanczy et al., 2012). Additional experiments
suggest that in E. amylovord’s native host, apple trees, HopX1 may also trigger HR (Bocsanczy et al., 2012).
This is in contrast to the observation that HopX1i (a HopX1 allele from P. syringae) does not trigger HR in

Arabidopsis, despite the onset of ZAR1-dependent ETI (Laflamme et al., 2020).
Recognition of HopB1 protease activity

HopB1 proteolytic cleavage of BAK1 also appears to be detected by plant NLRs (Figure 2). ETIl responses
induced by HopB1 are dependent on the presence of the ‘helper’ NLR ACTIVATED DISEASE RESISTANCE1
(ADR1) and its paralogs (Wu et al., 2020). Helper NLRs do not directly recognize effectors but are required
for the full activity of ‘sensor’ NLRs (Jubic et al., 2019). These findings suggest that BAK1 may be ‘guarded’
by an as-yet unidentified sensor NLR, particularly as ADR1 and HopB1 do not appear to directly interact
(Wu et al., 2020).
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Regulation of ETl-related HR by effector proteases

As outlined above, detection of effector proteases by NLRs can trigger ETl-dependent HR. However, some
effector proteases also act to repress HR. One such example is AvrPphB, a member of the YopT family of
P. syringae T3S cysteine protease effectors (Shao et al., 2002). In addition to triggering RPS5-mediated
ETI, AvrPphB also functions to suppress ETl launched upon detection of the effector AvrB (Figure 3). In the
absence of AvrPphB, AvrB recruits the host receptor-like cytoplasmic kinase RPM1-INTERACTING PROTEIN
KINASE (RIPK) to induce phosphorylation of RIN4, triggering ETI mediated by the NLR RESISTANCE TO P.
SYRINGAE PV. MACULICOLA1 (PRM1)(Liu et al., 2011; Mackey et al., 2002). By directly targeting RIPK for

cleavage, AvrPphB prevents phosphorylation of RIN4 thus avoiding RPM1 activation (Russell et al., 2015).

HopN1 (formerly known as AvrPtoN) suppresses HR-related cell death in tobacco and tomato (Lopez-
Solanilla et al., 2004) and diminishes defence-associated ROS production and callose deposition in
Arabidopsis (Rodriguez-Herva et al., 2012). Using in vitro pull-down assays followed by mass spectrometry,
the tomato chloroplast protein PsbQ (Photosystem Il oxygen-evolving complex protein 3) was identified
as a binding partner of HopN1 (Rodriguez-Herva et al., 2012) (Figure 3). PsbQ is required for full ROS
production and HR in response to bacterial infection. Analysis of thylakoid samples from N. benthamiana
revealed that degradation of PsbQ in the presence of HopN1 depends on its catalytic site remaining intact
(Rodriguez-Herva et al., 2012). This finding highlights the contribution of photosynthetic proteins to the
immune response, as well as their vulnerability to effector proteases despite localization in the

chloroplast.

Effector protease-mediated manipulation of mammalian innate immune signaling

Some families of T3SE proteases are conserved among plant and animal pathogens, albeit with differences
in their substrate proteins (see “Effector proteases: evolutionary conservation and diversity” below for
more details). This conservation, together with the similarities between the innate immune signaling
pathways in metazoa and plants (Ausubel, 2005; Jones et al., 2016), makes it interesting to compare T3SE
protease function in plants and animals. In both lineages, membrane-bound immune receptors detect
PAMPs or DAMPs present in the extracellular environment and relay signals into cells via different signal
transduction pathways, including mitogen-activated protein kinase (MAPK) signaling cascades. This

induces a proinflammatory response in animals and PTI in plants (Ausubel, 2005). Similarly, in both

10
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animals and plants, a large variety of distinct cytosolic NLR receptor proteins sense pathogen-associated
perturbations in the cytosol (Jones et al., 2016). Activated NLRs form higher order oligomers as modular
platforms to initiate downstream signaling, including initiation of cell death programs (Dangl and Jones,
2019). In plants, cell death triggered by effector recognition is typically categorized as HR, but the
mechanisms leading to the onset of cell death are not understood in as much detail as they are in animals
(Pitsili et al., 2020). In animals, distinct cell death pathways emitting different signals to the surrounding
tissue have been defined (Galluzzi et al., 2018; Jorgensen et al., 2017). Apoptosis can be triggered by
perturbations of the extracellular environment that are detected by a variety of plasma membrane
receptors, including Tumor Necrosis Factor Receptor 1 (TNFR1), resulting in activation of the cysteine
protease caspase-8 (Figure 3). Alternatively, apoptosis may be triggered by activation of caspase-9 as a
result of mitochondrial outer membrane permeabilization induced by intracellular stress. Both pathways
converge on the activation of the effector caspases -3 and -6, which cleave hundreds of protein substrates
to orchestrate an orderly demise of the cell (Crawford et al., 2012). Apoptosis eliminates cells during
development or after cellular stress that exceeds the capacity for repair and is generally considered to be

immunologically silent (Bedoui et al., 2020).

Pyroptosis and necroptosis, in contrast, are highly inflammatory forms of cell death leading to immune
cell recruitment (Bedoui et al., 2020; Flores-Romero et al., 2020; Galluzzi et al., 2018). Pyroptosis is
induced after activation of cytosolic NLRs, which triggers formation of higher order complexes termed
inflammasomes that activate caspase-1. Alternatively, intracellular pathogen-derived LPS can activate
caspase-4 and caspase-5 (Shi et al., 2014). On activation, all three inflammatory caspases cleave a number
of substrates including gasdermin-D (GSDMD) (Agard et al., 2010; Shi et al., 2015). The N-terminal
fragment of GSDMD oligomerizes and forms pores in the cell membrane, resulting in the release of pro-
inflammatory cytokines and subsequent cell death (Bedoui et al., 2020; Flores-Romero et al., 2020).
Necroptosis is a caspase-independent pro-inflammatory form of cell death initiated by plasma membrane
receptors such as TNFR1 and mediated by the receptor interacting serine-threonine kinases 1 (RIPK1) and
RIPK3, which phosphorylates the protein MLKL (mixed-lineage kinase domain-like) (Bedoui et al., 2020;
Galluzzi et al., 2018) (Figure 3). Phosphorylated MLKL assembles into large pore-forming oligomers that
cause plasma membrane rupture and release of a multitude of pro-inflammatory cellular DAMPs (Flores-

Romero et al., 2020).

These cell death pathways are remarkably interconnected, with caspase-8 at the nexus (Bedoui et al.,

2020; Fritsch et al., 2019). In the extrinsic pathway of apoptosis, plasma membrane receptor stimulation
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results in activation of caspase-8, which cleaves RIPK1 and RIPK3 and thereby prevents necroptosis. Thus,
necroptosis can be considered as a backup-program to induce cell death when apoptosis to extrinsic
stimuli is blocked (Bedoui et al., 2020; Jorgensen et al., 2017). Inactive caspase-8 further triggers
inflammasome formation and caspase-1 activation resulting in cell death by pyroptosis when necroptosis
is prevented by RIPK3 or MLKL ablation (Fritsch et al., 2019). Thus, the mammalian cell death pathways
not only guard the innate immune signaling pathways, but also each other against pathogen interference
(Bedoui et al., 2020; Jorgensen et al., 2017). Bacterial pathogens therefore must not only prevent pro-
inflammatory responses, but also avoid the trip wires of mutually cross-loaded cell death programs (Figure

3).

Two examples illustrate how T3SE proteases contribute to overcome this formidable challenge (Table 1).
Enteropathogenic Escherichia coli (EPEC), an attaching and effacing bacterium that causes persistent
diarrhea primarily in children, uses a variety of T3SEs to simultaneously suppress immune and cell death
signaling (Shenoy et al., 2018). This includes two zinc metalloproteases, NleC and NleD (Figure 3) that
interfere with the pro-inflammatory NF-kB signaling. Specifically, NleC attacks pro-inflammatory signaling
pathways by cleavage and inactivation of 3 subunits of NF-kB (Baruch et al., 2011; Pearson et al., 2011;
Yen et al., 2010), and also cut the acetyltransferase p300 that acts as transcriptional co-activator for many
genes, including those regulated by NF-kB (Shames et al., 2011). The second metalloprotease, NleD,
cleaves and inactivates the MAPKs c-Jun amino-terminal kinase (JNK) and p38 that are involved in pro-
inflammatory and apoptotic signaling (Baruch et al., 2011). A third T3SE protease, the cysteine protease
Espl, targets RIPK1 and RIPK3 to prevent necroptosis (Pearson et al., 2011) (Figure 3). The gram negative
bacterium Shigella flexneri, which causes diarrhea in humans, similarly prevents necroptotic cell death by
degradation of RHIM-containing proteins, including RIPK1 and RIPK3, with the EspL homolog OspD3
(Ashida et al., 2020).

Comparison of known T3SE protease functions in modulating immune signaling pathways in plants and
mammals reveals striking similarities. In both lineages, substrates that allow T3SE proteases to interfere
with PRR-activated MAPK signaling pathways have been identified. In plants, numerous substrates of T3SE
proteases in PRR-mediated signaling pathways are guarded by NLRs, resulting in HR cell death and a strain-
specific response (Pitsili et al., 2020). Similarly, in metazoa, pathogen-mediated manipulation of cellular
processes is sensed by cytosolic NLRs, triggering enhanced pro-inflammatory responses including cell
death in analogy to plant ETI and HR (Lopes Fischer et al., 2020). Identification of specific T3SE protease

targets in mammals has shown how these effectors allow pathogens to manipulate these cell-death
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inducing pathways for their benefit. One conspicuous difference in plants is that, in contrast to the wealth
of knowledge in mammals, the mechanism(s) by which plant HR cell death is executed remain poorly
understood. Several plant proteases of different mechanistic classes, as well as autophagy and the UPS,
have been implicated in the onset of regulated cell death induced by different triggers, but so far
comparatively few substrates are known (Balakireva and Zamyatnin, 2019; Salguero-Linares and Coll,
2019). Consequently, the molecular mechanisms of how T3SE proteases, and in facts T3SEs in general,
suppress plant HR-related cell death have remained elusive. Indications for such effector-mediated

suppression of HR have nevertheless been reported (Guo et al., 2009; Jamir et al., 2004; Wei et al., 2018).

Effector proteases: evolutionary conservation and diversity

Identification of T3SE proteases requires evidence of type lll secretion, knowledge of host targets or of
effects on the host immune response (e.g. dampening of PTI or ETI activation) (Lindeberg et al., 2005),
identification of catalytic residues/triad, as well as in planta or in vitro evidence of protease activity. Pto
DC3000 has been used as a model pathogen for four decades (Xin et al., 2018). As highlighted above, the
Pto DC3000 genome is predicted to encode four T3SE proteases: HopB1, HopC1, HopN1 and HopX1 (Table
1). Another potential T3SE protease is HopZ1, although its protease activity appears to be very weak in
vitro and it may primarily act as an acetyltransferase (Zhou et al., 2011). Other pathovars of P. syringae
code for additional T3SE proteases, such as for example AvrPphB and AvrRpt2, both of which have been

among the most studied T3SE proteases, as highlighted above (Table 1).

Analysis of the genomes of 494 P. syringae belonging to different pv. groups (Dillon et al., 2019; Markowitz
et al., 2012; Wattam et al., 2014) indicates that HopX1 (formerly known as AvrPphE) homologs are widely
distributed across 308 different strains, including a variety of pathovars (Dillon et al., 2019; Studholme et
al., 2009). The broad distribution of HopX1 might reflect its importance to facilitate P. syringae entry inside
host tissue via stomata (Gimenez-lbanez et al., 2014), an essential first step in the infection process of P.
syringae (Xin et al., 2018). Interestingly, variations in HopX1 sequences among different races of P.
syringae pv. phaseolicola affect both strain virulence and host ability to trigger ETl in bean plants (Stevens
et al., 1998). This highlights the fine-tuning mechanisms at play in effector protease sequence, target

selection and recognition by host NLRs.

Other Pto DC3000 T3SE proteases such as HopC1, HopN1 and HopB1 are also broadly distributed among

P. syringae strains, with putative homologs found in 115, 74 and 66 strains, respectively (Dillon et al.,
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2019). HopN1 appears to be particularly important as, together with 7 other T3SE, it is part of a so-called
minimal repertoire of Pto DC3000 effectors needed to restore virulence of a Pto DC3000 mutant strain in
which 28 effectors have been deleted (Cunnac et al., 2011). Although Pto DC3000 codes for all 4 proteases
in its genome, only five other P. syringae strains code for the same 4 effector proteases, including one
other Pto strain and some strains of P. syringae pv. maculicola (Pma). Interestingly, some of these Pma
strains are thought to belong to the same phylogenetic group as Pto DC3000 (Clarke et al., 2010), perhaps
highlighting that the concept of pathovar does not necessarily correlate with phylogenetic relationship

(Berge et al., 2014).

AvrRpt2 (initially isolated from Pto JL1065) is arguably one of the most studied T3SE proteases (Innes et
al., 1993). Analysis of the 494 genome sequences of P. syringae suggests that only 25 of these strains code
for potential AvrRpt2 homologs (Dillon et al., 2019). These 25 strains belong to different pathovar groups,
indicating that AvrRpt2 function as a virulence factor is not specific to one host type. Notably, AvrRpt2 is
also encoded by the genomes of other plant pathogens (e.g. Ralstonia solanacearum or E. amylovora), as
well as symbiotic bacteria (e.g. Mesorhizobium huakuii and Sinorhizobium medicae) (Eschen-Lippold et al.,
2016). AvrRpt2 from E. amylovora in particular also acts as a virulence factor during infection of its native
host (pear and apple trees) (Vogt et al., 2013; Zhao et al., 2006). However, a single amino acid change
(Cys156Ser) found in natural variants of E. amylovora AvrRpt2 is sufficient to change its recognition by
cognate NLRs in apple (Vogt et al., 2013). Similarly, differences in the substrate specificity of AvrRpt2
homologs found in pathogenic and non-pathogenic bacteria have been found (Eschen-Lippold et al.,
2016). These findings highlight how sequence differences among putative AvrRpt2 homologs may be

relevant in terms of virulence/avirulence.

Other Pto DC3000 T3SE proteases are also conserved among plant pathogens. For example, HopX1
homologs have been identified in R. solanacerum, Xanthomonas campestris and E. amylovora (Bocsanczy
et al., 2012; Nimchuk et al., 2007). Proteases with sequence similarities to HopX1 are also encoded by
animal pathogens such as Legionella pneumophila (the causative agent of ‘Legionnaire’s disease’)
(Nimchuk et al., 2007). However, it is expected that the substrates of the potential homologs have likely

diverged (Nimchuk et al., 2007).

Such widespread distribution of effector protease across plant and animal pathogens is also found among
YopT family members (Table 1), which includes YopT from Yersinia pestis (the causative agent of bubonic
plague), as well as HopC1, HopN1, AvrPphB (P. syringae pv. phaseolicola), NopT (Sinorhizobium fredii
NGR234) and RipT in R. solanacearum (Dowen et al., 2009; Shao et al., 2002). All YopT family members
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have a conserved catalytic triad, as well as similar secondary structures, but are otherwise variable in
sequence (Dowen et al., 2009; Shao et al., 2002). YopT family members from plant pathogens exhibit auto-
proteolytic activity which is essential for virulence (Dai et al., 2008; Dowen et al., 2009; Shao et al., 2002),
as well as recognition by cognate NLRs (Ade et al., 2007; Shao et al., 2003; Shao et al., 2002). However, in
animal pathogens such as Y. Pestis, YopT does not undergo self-cleavage (Shao et al., 2002). Similarly to
HopX1, it is expected that the substrates of YopT family members have diverged between plant and animal
pathogens. This is supported by the fact that (i) expression of AvrPphB in mammalian cell lines does not
trigger the same cytotoxic phenotype as expression of YopT (Shao et al., 2002); and (ii) YopT’s main target
appears to be RhoA, a member of the GTPase family of proteins (Shao et al., 2003; Shao et al., 2002),
while AvrPphB’s main target in Arabidopsis is the unrelated protein kinase AvrPphB SUSCEPTIBLE
PROTEIN1 (PBS1) (Shao et al., 2003). Furthermore, based on the crystal structure of AvrPphB, some
features of the substrate binding sites of YopT family members are not conserved (Zhu et al., 2004), even
within plant pathogens. Hence, YopT family members such as HopC1, HopN1, AvrPphB and NopT could
target different protein substrates (Zhu et al., 2004). Interestingly, symbiotic bacteria (e.g. Rhizobium
species) also code for YopT family members, but again, these probably target distinct host proteins. For

example, Sinorhizobium NopT (formerly known as Y4zC) does not cleave PBS1 (Zhu et al., 2004).

A more contentious case of potential effector proteases found among plant and animal pathogens are
members of the YoplJ family (reviewed in (Ma and Ma, 2016)). YopJ family members may act as both or
either acetyltransferases and/or proteases. The founding member of this family, YopJ from Y. pestis,
appears to act, at least in part, by decreasing the amount of ubiquitin and SUMO chains in vivo, suggesting
that it may have ubiquitin-like protease activity (Orth et al., 2000; Sweet et al., 2007; Zhou et al., 2005).
However, it is unclear if this is directly due to YoplJ activity as a protease, or if it is a secondary effect of
YopJ activity on another substrate, perhaps via acetylation since YopJ acts as an acetyltransferase
(Meinzer et al., 2012; Mukherjee et al., 2006; Paquette et al., 2012). Nevertheless, some members of the
Yopl family, including HopZla and HopZ3 (Table 1) from P. syringae pv. syringae and pv. glycinea (Ma et
al., 2006), as well as XopJ from X. campestris pv. vesicatoria (Ustun and Bornke, 2015), have been shown

to exhibit some degree of protease activity (Ma et al., 2006; Zhou et al., 2011).

In sum, the evolutionary conservation of effector protease families such as YopT across animal and plant
pathogens is testament to their important roles as effectors. Nevertheless, T3SE proteases are versatile
actors in the interplay between pathogenicity and immunity upon infection of a host, as outlined in

sections above. Sequence variation and divergence in function enables the recognition of different host
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substrates, but also allows for differential recognition by hosts who have evolved cognate receptors.
Notably, despite the evolutionary relevance of T3SE proteases and mechanistic details underlying their
activity and recognition, overall, relatively little is still known about their targets at the proteome-wide
level (Box 1). In recent years, mass spectrometry-based methods have emerged as a promising tool to
address these questions in a largely unbiased manner (Demir et al., 2018). Specific tools for protease
substrate identification have been developed (Box 1), firmly establishing degradomics as a subfield in
proteomics (Lopez-Otin and Overall, 2002). In biomedical research, degradomics has been extensively
used to define caspase substrates (Agard et al., 2010), caspase specificity (Julien and Wells, 2017),
proteolytic mechanisms underlying cell death (Crawford et al., 2012) and is increasingly used to
characterize host manipulation by viral and bacterial proteases (Marshall et al., 2017). However, to the
best of our knowledge, no similar applications to define the substrates of plant effector protease have
been reported. We anticipate that our understanding of proteolytic processes and protease function in
plant cell death and pathology will similarly benefit from degradomics approaches, particularly as recent
methodological advances have increased sensitivity and now enable analysis of samples that yield only

microgram amounts of proteins (Shema et al., 2018; Weng et al., 2019).

Conclusion

The intriguing mechanisms underlying T3SE protease function highlight how phytopathogenic bacteria
deploy these enzymes to undermine plant immunity, indeed cutting the line from signal perception to
response. Equally intriguing is how plants guard T3SE protease targets and use decoys to detect T3SE
protease activity, setting an emergency “red” line to swift and massive responses that in turn are targeted
by additional effectors including proteases. However, our proteome-wide knowledge of T3SE protease
substrate repertoires, and therefore also of their function, is incomplete even in the extensively studied
Arabidopsis-Pseudomonas model pathosystem. In other plant-microbe interactions, this knowledge is
even more fragmented. Similarly to other T3SEs, we are currently lacking information on complete
substrate repertoires, enzymatic properties such as sequence specificity, and information of similarities
and differences among homologous T3SE proteases in both pathogenic and non-pathogenic microbes. We
believe that sensitive unbiased approaches, including the mass spectrometry-based techniques outlined
above (Box 1), will reveal new T3SE protease targets and further inform on plant immune responses
(Toruno et al., 2016). In addition, clarification of their substrate specificity will facilitate decoy engineering

of host proteins guarded by specific NLRs (Kourelis et al., 2016). For instance, seminal work demonstrated
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that substitution of the AvrPphB effector cleavage site in A. thaliana PBS1, which is guarded by the NLR
RPS5, enables recognition of other pathogen bacterial and viral effector proteases and thereby confers
resistance to new pathogens (Kim et al., 2016). This system has already been translated to soybean as a
crop system (Pottinger and Innes, 2020), suggesting that T3SE protease activity can be exploited more

widely for engineering disease-resistant crops.
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Table 1. Overview of the bacterial T3SE proteases discussed in this review. Selected bacterial effector
proteases secreted by type Il secretion systems. Green: phytopathogens; red: mammalian pathogens.
Type: CP, cysteine protease; TP, threonine protease; MP, metalloprotease. Clan and family membership
according to MEROPS nomenclature. Families combine homologous proteases with significant sequence
similarity, while clans combine families arising from a common ancestor based on a similar protein

structure and/or order of catalytic amino acids in the primary sequence (Rawlings et al., 2014).

Pathogen Effector Type Clan Family Substrate/Target Function Source
PBS1, RIPK, PBS1-like (Ade et al., 2007;
AvrPphB cP | CA | C58B kinases (PBL), BIK1 supresses PTI Zhang et al., 2010)
(Eschen-Lippold et al.,
RIN4, NOIs block RPM1 activation 2016; Kim et al.,
AviRpt2 cP | ca | cro _200%)
- (Cui et al., 2013;
5 prevents MKK4 activation, Eschen-Lippold et al
modifies auxin signaling 2016)
HopB1 TP T8 activated BAK1 supresses PTI (Li et al., 2016)
Pseudomonas HopC1 n.a. n.a. n.a.
Syringae
HopZ1a CP CE C55
HopZ2 CP CE C55
HopZ3 CP CE C55
Hopz1 CP CE C55
HopX1 (Gimenez-lbanez et al.,
(AvrPphE) CP CA C103 JAZ repressors
supresses HR, ROS- and callose (Rodriguez-Herva et
HopN1 cp CA €588 PsbQ production al., 2012)
Rhizobium sp. NopT CP CA C58 regulating symbiosis (Dai et al., 2008)
Ralstonia ] (Nakano and
solanacearum RipE1 CP | CA 103 JAZ repressors Mukaihara, 2019)
.. Eop1 CcP CE C55 (Nissinen et al., 2007)
Erwinia
vt AVIRpt2EA cP | ca c70 RIN4 (Vogt et al., 2013)
Shigella flexneri OspD3 CP na C118 RIPK1, RIPK3 blocks necroptosis (Ashida et al., 2020)
EspL CP na C118 RIPK1, ?é’;f?D;FIF and blocks necroptosis (Pearson et al., 2011)
enteropathogenic
Escherichia coli NleC MP MA M85 NF-kB, p65 blocks inflammation (Baruch et al., 2011)
(EPEC)
NleD MP MA M91 JNK, p38 blocks apoptosis/inflammation (Baruch et al., 2011)
Yersinia pestis YopT CP CA C58A Rho GTPases disruption of actin cytoskeleton (Shao et al., 2002)
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Box 1: Degradomics for unbiased effector protease substrate discovery

Shotgun proteomics, where proteomes are digested into peptides for mass spectrometric analysis,
enables large-scale quantitative proteome comparisons even at near-complete coverage (Mergner et al.,
2020). By determining changes in protein abundance, such approaches allow identification of candidate
substrates, particularly for degradative proteases (Demir et al., 2018). In contrast, site-specific proteolytic
cleavages are defined by the new protease-generated neo-N and neo-C termini, but their identification in
the complex background of a proteome digest is challenging and therefore requires selective enrichment
(Niedermaier and Huesgen, 2019). This can be achieved by (i) selective tagging of protein termini before
digest, followed by enrichment (termed “positive selection”); (ii) by complete modification of protein
termini with a labeling reagent, followed by proteome digest and depletion of the peptides generated by
the digest (termed “negative selection”); or (iii) based on the peptide charge (Bogaert and Gevaert, 2020;
Perrar et al., 2019). Due to the compatibility with amine-reactive isotope labeling reagents, comparative
ease of use and superior sensitivity, enrichment of N termini by negative selection is currently most

frequently applied.

All methods allow for identification of candidate substrates by comparison of proteomes with differential
exposure to the protease of interest, ideally using a catalytically inactive version carrying a point mutation
in the (presumed) active site as a control. In vitro incubation of the candidate substrate protein, or of a
cell extract with recombinant protease constructs, provides the most direct proof of protease/substrate
relationships. However, this “reverse” degradomics approach (Julien and Wells, 2017) is prone to “false
positive” cleavage events, for example in proteins destabilized by the incubation conditions or in proteins
with distinct subcellular localization(s) in vivo. Alternatively, substrates can be identified in a “forward”
approach based on differential activity in vivo, for example by constitutive or inducible expression of
effector proteases in planta. This overcomes the issues of “non-native” substrate cleavage (although
strong expression may still result in improper subcellular localization) and provides for host factors and
post-translational modifications that may be required for protease activation. More complex scenarios
such as delivery by an otherwise effector-depleted pathogen strain or comparison in wild type infection
experiments are needed if effector substrate recognition depends on modifications induced by pathogen
perception or the presence of other effectors. While cleavages observed in these systems are more likely
to be relevant, they can also be masked by subsequent processing or degradation, or arise from a plethora

of indirect effects. Therefore, a combination of these approaches including targeted genetic or
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922 biochemical validation is needed to establish direct, physiologically relevant protease-substrate

923 relationships (Demir et al., 2018).
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Figure legends

Figure 1. T3SE proteases interfere with plant innate immune signaling. (a) PTI signaling pathway. The
FLS2-BAK1 co-receptor complex initiates PTI signaling upon perception of flg22. Phosphorylated BIK1
dissociates from the receptor complex and promotes ROS production and Ca?* influx by phosphorylating
RBOHD and the CNGC2/4 calcium channel (Tian et al., 2019). MAPK cascades transduce PTI signals
intracellularly, resulting in the upregulation of defence genes including SA-response genes. RIN4 generally
functions as an inhibitor of PTI. (b) T3SE protease suppression of PTI. HopB1 cleaves phosphorylated BAK1
inhibiting downstream signaling and BIK1 phosphorylation. BIK1 is itself cleaved by AvrPphB, thus
reducing RBOHD phosphorylation and ROS production. In the nucleus, HopX1 cleaves JAZ transcriptional
repressors, activating JA-responsive genes and as a consequence of JA signaling activation, suppressing
SA genes. Additionally, AvrRpt2 cleavage of RIN4 yields three fragments, two of which hyperactively
suppress PTI. Pink pac-man: T3SE proteases; blue: host proteins, with light blue color and dashed lines
indicating T3SE protease targets; dashed lines indicate processes that are disrupted as a consequence of

T3SE protease activity.

Figure 2. Detection of effector protease activity by cytosolic plant immune receptors. Plant NLRs induce
ETI in response to P. syringae T3SE proteases. (a) RIN4 interacts with and inhibits RPS2. Cleavage of RIN4
by AvrRpt2 relieves RPS2 from repression, triggering the activation of ETI. (b) PBS1 interacts with RPS5.
AvrPphB cleavage of PBS1 induces a conformational change in RPS5, triggering the onset of ETI. (c) HopB1
interacts with the FLS2 receptor to access phosphorylated (active) BAK1 for cleavage. ETI activated in
response to HopB1 requires the ‘helper’ NLR ADR1 and likely involves other unknown receptors e.g.
‘sensor’ NLRs. (d) HopX1 appears to promote an interaction between RLCKs ZED1 and SZE1, leading to the
activation of ZAR1-mediated ETI. To date, no link has been established between ZAR1 activation and the
protease activity of HopX1. Pink pac-man: T3SE proteases; blue: host proteins, with light blue color and
dashed lines indicating T3SE protease targets; yellow: NLRs involved in the detection of T3SE proteases
and onset of ETI; question marks indicate unknown mechanisms and components; dashed lines indicate

processes that are disrupted as a consequence of T3SE protease activity.

Figure 3. Bacterial effector proteases interfere with plant and mammalian cell death and pro-
inflammatory signaling. (a) P. syringae T3SE proteases suppress HR (regulated cell death associated with
ETI) in plant cells. AvrPphB cleaves the host kinase RIPK, impeding AvrB-induced phosphorylation of RIN4

to prevent RPM1-mediated HR. In the chloroplast, HopN1 suppresses chloroplast ROS production by
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cleaving PsbQ. Chloroplast-generated ROS plays an important role in establishing HR (Liu et al., 2007;
Rodriguez-Herva et al., 2012; Zurbriggen et al.,, 2010). (b) Perturbation of the extracellular
microenvironment are sensed by membrane-bound receptors such as TNF receptor 1 (TNFR1), activating
intracellular signaling. Bacterial proteases injected by the T3SS cleave key components of both pro-
inflammatory signaling as well as cell death pathways. For details, see main text. Pink pac-man: T3SE
proteases; pink circle: T3SE; blue: host proteins, with light blue color and dashed lines indicating T3SE
protease targets; yellow rectangle: NLR involved in the detection of T3SE proteases and onset of ETI;

dashed lines indicate processes that are disrupted as a consequence of T3SE protease activity.
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