Cutting the line: manipulation of plant immunity by bacterial type III 1 effector proteases 2 3 Brian C. Mooney^{1,#}, Melissa Mantz^{2,3,#}, Emmanuelle Graciet^{1,4,*}, Pitter F. Huesgen^{2,3,5,*} 4 5 ¹Department of Biology, Maynooth University, Maynooth, County Kildare, Ireland 6 ²Central Institute for Engineering, Electronics and Analytics, ZEA-3, Forschungszentrum Jülich, Jülich, 7 Germany. 8 ³CECAD, Medical Faculty and University Hospital, University of Cologne, 50931 Cologne, Germany 9 ⁴Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, Co. Kildare, 10 Ireland 11 ⁵Institute for Biochemistry, Faculty of Mathematics and Natural Sciences, University of Cologne, Cologne, 12 Germany 13 14 # equal contribution 15 *corresponding authors 16 17 Email addresses: 18 Brian C. Mooney, mooneyb3@tcd.ie; Melissa Mantz, m.mantz@fz-juelich.de; 19 For correspondence: 20 Emmanuelle Graciet, Emmanuelle.Graciet@mu.ie; Pitter F. Huesgen, p.huesgen@fz-juelich.de 21 22 Running title: Bacterial type III effector proteases manipulate plant immunity 23 24 The date of submission: Nov 08, 2020 25 Tables: 1

26

27

Figures: 4 (3 main text figures, 1 in box)

Word count: 6142

Highlight

We review how phytopathogenic bacteria interfere with innate plant immunity and cell death using effector proteases directly secreted into the cytosol by type three secretion systems.

Abstract

Pathogens and their hosts are engaged in an evolutionary arms race. Pathogen-derived effectors promote virulence by targeting components of a host's innate immune system, while hosts have evolved proteins that sense effectors and trigger a pathogen-specific immune response. Many bacterial effectors are translocated into host cells using type III secretion systems. Type III effector proteases irreversibly modify host proteins by cleavage of peptide bonds and are prevalent among both plant and animal bacterial pathogens. In plants, the study of model effector proteases has yielded important insights into the virulence mechanisms employed by pathogens to overcome their host's immune response, as well as into the mechanisms deployed by their hosts to detect these effector proteases and counteract their effects. In recent years, the study of a larger number of effector proteases, across a wider range of pathogens, has yielded novel insights into their functions and recognition. One key limitation has remained the lack of methods to detect protease cleavage at the proteome-wide level. We review known substrates and mechanisms of plant pathogen type III effector proteases, compare their functions to those of known type III effector proteases of mammalian pathogens. Finally, we discuss approaches to uncover their function on a system-wide level.

Keywords

- Degradomics, Effector Proteases, *Pseudomonas syringae*, Host/pathogen interactions, Type III Secretion System, Regulated Cell Death, Hypersensitive Response

Introduction

Plants have evolved multifaceted innate immune responses that are sufficient to overcome most pathogen challenges. This sophisticated and robust innate immune system comprises two interconnected tiers (Jones *et al.*, 2016). The first tier, known as pattern-triggered immunity (PTI) relies on the detection of highly-conserved pathogen molecules or 'PAMPs' (pathogen associated molecular patterns; *e.g.* bacterial flagellin or its 22-amino acid peptide flg22) at the cell-surface by Pattern Recognition Receptors (PRRs) that subsequently activate the immune response. Alternatively, some PRRs recognize 'DAMPs' (damage-associated molecular patterns), a variety of host-derived factors that commonly arise following pathogen attack, such as extracellular ATP and protein or cell wall fragments (Hou *et al.*, 2019; Yamaguchi and Huffaker, 2011). PTI signals originating at the plasma membrane (PM) are transduced downstream by intracellular kinases and secondary messengers to activate the hallmark features of PTI (Dodds and Rathjen, 2010). These include transcriptional reprogramming to activate defence-related genes, stomatal closure to limit pathogen entry, the generation of reactive oxygen species (ROS) toxic to microbes and callose deposition to reinforce the cell wall (Bigeard *et al.*, 2015; Li *et al.*, 2016). Thus, PTI provides protection against a broad spectrum of pathogens.

To counteract these defences, pathogens secrete repertoires of proteins known as 'effectors' to interfere with PTI and promote infection. Notably, bacterial pathogens may utilize the type III secretion system (T3SS) to deliver effectors directly into the cytosol of host cells where they can suppress key immune regulators by a variety of mechanisms (Khan *et al.*, 2018; Langin *et al.*, 2020; Toruno *et al.*, 2016). However, while pathogen-derived effectors target specific components of a host's PTI response to promote pathogenicity, adapted hosts have evolved proteins - typically members of the polymorphic nucleotide binding/leucine-rich repeat (NLR) family - that sense effectors and trigger a pathogen-specific immune response, termed effector-triggered immunity (ETI) (Cui *et al.*, 2015; Toruno *et al.*, 2016). ETI is often, but not necessarily, associated with a localized form of regulated cell death termed hypersensitive response (HR) (Laflamme *et al.*, 2020; Pitsili *et al.*, 2020). Several mechanisms of effector detection by NLRs have been described, including direct binding interactions as well as 'indirect' surveillance of effector activities (Cui *et al.*, 2015; Kourelis and van der Hoorn, 2018). The outcome of host/pathogen interactions thus depends on the set of effectors expressed by a given pathogen and the presence or absence of cognate NLRs in the host, resulting in an evolutionary arms race between plant pathogens and their hosts.

Over the past four decades, the model plant pathogen *Pseudomonas syringae* has played key roles in the discovery of effector function and ETI regulation (Xin *et al.*, 2018). Over 14,600 putative T3S effectors

(T3SEs) have been identified in strains of P. syringae (Dillon et al., 2019), several of which function as proteases that target components of PTI to enhance virulence (Figaj et al., 2019; Hou et al., 2018). An outstanding feature of proteases among other effectors is the ability to interfere with host processes using proteolysis as a site-specific, irreversible post-translational protein modification (Marshall et al., 2017). As is the case with other proteases, T3SE proteases belong to several mechanistic classes that are classified into different clans and families depending on the structure and sequence similarity of their peptidase domain (Rawlings et al., 2018), with cysteine and threonine proteases found in the effector protease repertoire of P. syringae (Table 1). Once inside the host cell, T3SE proteases cleave peptide bonds within proteins to inactivate immune functions, activate latent functions or expose recognition sites for rapid degradation by the host ubiquitin-proteasome system (UPS) (Dissmeyer et al., 2018; Ravalin et al., 2019). Notably, several protease families are conserved among bacterial pathogens that infect animals and plants (Dowen et al., 2009; Nimchuk et al., 2007; Shao et al., 2002), highlighting their effectiveness at targeting eukaryotic innate immune responses. Remarkably, T3SE repertoires also include proteolytic enzymes that interfere with UPS-mediated proteolytic signaling in the host by cleaving isopeptide bonds within chains of poly-ubiquitin or ubiquitin-like proteins (e.g. SUMO) (Pruneda et al., 2016; Xiang et al., 2020). Here we focus on T3SE proteases, but for a detailed discussion of effector-mediated manipulation of the host proteolytic machinery we refer the readers to an excellent recent review (Langin et al., 2020).

In this review, we summarize the current knowledge on T3SE proteases in phytopathogenic bacteria with a focus on (i) their mode of action as virulence factors and the co-evolution with cognate plant NLRs; (ii) their role in the regulation of regulated cell death both in plants and animals; and (iii) their evolutionary conservation and diversity across plant and animal pathogens. Finally, considering the state of the field and the urgent need to identify proteome-wide targets of T3SE proteases, we also briefly discuss mass spectrometry-based methods that may overcome some of the current limitations (**Box1**).

Suppression of PTI by *P. syringae* T3SE proteases

As indicated above, effector proteases act primarily as virulence factors that dampen innate immune responses in plants. Plants recognize flagellin fragments such as a 22-amino acid residue peptide flg22 *via* the PM-bound receptor-like kinase (RLK) FLAGELLIN-SENSITIVE2 (FLS2). In the absence of a pathogen threat, FLS2 constitutively associates with the PBS1-like (PBL) family VII receptor-like cytoplasmic kinase (RLCK) *BOTRYTIS*-INDUCED KINASE1 (BIK1) at the PM (Lu *et al.*, 2010). Upon flagellin detection, FLS2 forms

a co-receptor complex with fellow RLK BRI1 ASSOCIATED RECEPTOR KINASE1 (BAK1), triggering a series 118 119 of phosphorylation events that initiate PTI signaling (Bigeard et al., 2015). Phosphorylated BIK1 dissociates from the receptor complex and activates downstream immune responses including influx of Ca²⁺ (Tian et 120 121 al., 2019) and ROS production (Kadota et al., 2014). Both BAK1 and BIK1 are targets of effector proteases 122 secreted by P. syringae to impede early PTI signals, as well as downstream signaling pathways (Figure 1). 123 BAK1 can be cleaved by P. syringae HopB1 (Figure 1 and Table 1) (Figaj et al., 2019; Li et al., 2016). When 124 expressed directly in protoplasts, HopB1 constitutively interacts with FLS2 (Li et al., 2016). After flg22-125 induced formation of the FLS2-BAK1 co-receptor complex, BAK1 is phosphorylated at Thr455 prompting 126 its cleavage by HopB1 between Arg297 and Gly298 (Li et al., 2016). HopB1 cleavage of BAK1 impairs flg22-127 triggered immune responses (Wu et al., 2020) and disrupts downstream signals including a reduction in 128 the levels of phosphorylated BIK1 leading to increased P. syringae growth (Li et al., 2016). 129 BIK1 is itself targeted by AvrPphB (also known as HopAR1) (Zhang et al., 2010) (Figure 1 and Table 1). 130 AvrPphB cleaves several PBL kinases including BIK1, PBS1, PBL1, PBL2 and PBL3 (Nimchuk et al., 2007; 131 Shao et al., 2003; Zhang et al., 2010). To access BIK1, AvrPphB must be targeted to the PM. Following its 132 delivery in the host cell, AvrPphB first undergoes autoproteolytic cleavage in planta to expose embedded 133 residues Gly63 and Cys64 at the N-terminus of the larger (C-terminal) AvrPphB fragment (Nimchuk et al., 134 2000; Puri et al., 1997). Processed AvrPphB is myristoylated and palmitoylated in vivo at these N-terminal 135 sites, prompting its translocation to the PM (Dowen et al., 2009). Expression of transgenic AvrPphB in 136 Arabidopsis inhibits PTI responses triggered by multiple PAMPs including flg22, elf18 (derived from 137 bacterial Elongation Factor-Tu) and fungal chitin (Zhang et al., 2010). Abolition of AvrPphB protease 138 activity by a Cys98Ser substitution significantly reduces its suppression of the flg22-inducible marker gene 139 FLG22-INDUCED RECEPTOR-LIKE KINASE1 (FRK1), indicating that protease activity is required for its 140 immunosuppressive function (Shao et al., 2003; Zhang et al., 2010). 141 Besides direct regulation by kinases or secondary messengers like reactive oxygen species (ROS) and Ca²⁺, 142 phytohormones are major regulators of transcriptional reprogramming during PTI. The principal immune 143 hormones ethylene (ET), jasmonic acid (JA) and salicylic acid (SA) accumulate in response to flg22 (Berens 144 et al., 2017). Each hormone controls an extensive network of response genes. For example, over 3,600 145 Arabidopsis genes are responsive to JA (Hickman et al., 2017). In general, the SA network is particularly

effective against biotrophic or hemi-biotrophic pathogens (like P. syringae), while JA and ET are associated

with the response to necrotrophs (Glazebrook, 2005). The contrasting roles played by these hormones

146

can lead to complex signaling interactions, typified by a mutual antagonism between the SA and JA pathways (Berens *et al.*, 2017). These interactions are subject to manipulation by effectors to favour pathogen virulence.

HopX1 from *P. syringae* pv. *tabaci* cleaves JASMONATE-ZIM DOMAIN (JAZ) proteins (Gimenez-Ibanez *et al.*, 2014), which function as major repressors of JA-responsive transcription factors (Pauwels *et al.*, 2010; Pauwels and Goossens, 2011) (**Figure 1** and **Table 1**). *In planta*, HopX1 accumulates in the cytoplasm and nucleus and interacts with the conserved zinc-finger inflorescence meristem (ZIM) domain of JAZ repressors leading to their elimination with no detectable fragments remaining (Gimenez-Ibanez *et al.*, 2014). The HopX1 catalytic residue Cys179 is required for degradation of JAZ5 *in vitro* (Gimenez-Ibanez *et al.*, 2014), indicating that JAZ proteins are targeted directly for proteolysis. Ectopic expression of HopX1 in *Arabidopsis* alleviates repression of JA-response genes while reducing the expression of SA-inducible marker genes important for combatting *P. syringae* infection (Gimenez-Ibanez *et al.*, 2014). The recently characterized homolog RipE1 from *R. solanacearum* also promotes the degradation of JAZ repressors with similar outcomes (Nakano and Mukaihara, 2019). The activity of HopX1 during infection is comparable to the effect of coronatine, a structural mimic of JA-Ile secreted by *P. syringae* to activate the JA pathway (Gimenez-Ibanez *et al.*, 2014; Zheng *et al.*, 2012), highlighting the diverse strategies employed by pathogens to overcome hormonal regulation of the host immune response.

The *P. syringae* T3S papain-like cysteine protease AvrRpt2 cleaves nitrate-induced (NOI) domain-containing proteins, including RPM1-INTERACTING PROTEIN4 (RIN4) (Axtell *et al.*, 2003; Chisholm *et al.*, 2005; Eschen-Lippold *et al.*, 2016; Goslin *et al.*, 2019; Kim *et al.*, 2005a) (**Figure 1** and **Table 1**). RIN4 is a PM-localized central immune regulator that generally inhibits PTI and is targeted by multiple effectors (Kim *et al.*, 2005b; Ray *et al.*, 2019; Toruno *et al.*, 2016). Less is known about the function of other NOI-domain containing proteins that are also targeted by AvrRpt2 (Eschen-Lippold *et al.*, 2016). An important aspect of AvrRpt2 function is its activation by the cyclophilin/peptidyl-prolyl isomerase ROC1 in *Arabidopsis* (Coaker *et al.*, 2005; Coaker *et al.*, 2006; Figaj *et al.*, 2019). Activated AvrRpt2 then undergoes autoproteolytic processing and is likely myristoylated at Gly72 to facilitate co-localization with RIN4 at the PM (Coaker *et al.*, 2005; Coaker *et al.*, 2006; Kim *et al.*, 2005a).

AvrRpt2 cleavage of RIN4 yields two fragments termed ACP2 (AvrRpt2-cleavage product 2) and ACP3 containing the majority of the N-terminal and C-terminal NOI domains respectively (Toruno *et al.*, 2016). Although the elimination of a negative immune regulator by pathogen proteases appears counter-

productive, the ACP2 and ACP3 fragments were found to hyperactively suppress PTI in comparison with the full-length protein (Ray et al., 2019; Toruno et al., 2016) (Figure 1). Both ACP2 and ACP3 appear to be short-lived in planta but the exact mechanism of their removal is unclear (Axtell et al., 2003; Axtell and Staskawicz, 2003; Goslin et al., 2019). Fragments generated by AvrRpt2 cleavage of several other NOI proteins (NOI1, NOI6 and NOI11) are substrates for the N-degron pathway (Goslin et al., 2019), a ubiquitindependent protein degradation pathway that targets substrate proteins for degradation based on the identity of their N-terminal residue (Dissmeyer et al., 2018; Holdsworth et al., 2020). It remains unclear whether these NOI proteins or their cleavage products exert any functional influence on PTI or are merely inadvertent targets of AvrRpt2, with RIN4 as the operative target. However, AvrRpt2 also appears to promote virulence of P. syringae independently of RIN4 (Lim and Kunkel, 2004) suggesting the existence of other targets that participate in the immune response. Notably, it has been reported that AvrRpt2 also stimulates turnover of Aux/IAA negative regulators to enhance auxin signaling during infection, although direct cleavage by AvrRpt2 was not detected in this case (Cui et al., 2013). Similarly, AvrRpt2 has been shown to disrupt MAPK signaling by suppressing the flg22-induced phosphorylation of MPK4 and MPK11 in Arabidopsis. However, the identity of the AvrRpt2 substrate(s) responsible for this down-regulation remain unknown (Eschen-Lippold et al., 2016).

Detection of effector protease activity in plants

Recognition of AvrPphB protease activity

It was first reported by (Simonich and Innes, 1995) that *Arabidopsis* plants carrying the gene *RESISTANCE TO P. SYRINGAE5* (*RPS5*) were resistant to *P. syringae* pv. tomato DC3000 (*Pto*) strains carrying AvrPphB (then known as AvrPph3). Subsequent investigations revealed that RPS5-mediated resistance requires AvrPphB cleavage of PBS1 (Shao *et al.*, 2003; Zhang *et al.*, 2010). Although more recent studies have revealed that AvrPphB also cleaves other PBS1-like proteins like BIK1 (Zhang *et al.*, 2010), only cleavage of PBS1 is sufficient to trigger ETI (Ade *et al.*, 2007) (**Figure 2**). Considering that BIK1 plays a major role in PTI signaling while PBS1 makes a relatively minor contribution (Zhang *et al.*, 2010), PBS1 has been described as a 'decoy' target guarded by RPS5, while BIK1 (and possibly other PBL kinases) are the 'operative' targets of AvrPphB (Pottinger and Innes, 2020; Sun *et al.*, 2017). According to the current model of RPS5 activation, PBS1 interacts with the N-terminal coiled coil (CC) domain of RPS5 in pathogen-free conditions, maintaining RPS5 in an inactive, ADP-bound state (Ade *et al.*, 2007; Qi *et al.*, 2014). Upon

infection, cleavage of PBS1 by AvrPphB induces a structural change in RPS5, permitting the exchange of ADP for ATP and thereby activating ETI signaling and HR (Ade *et al.*, 2007).

Recent studies have revealed that AvrPphB protease activity is also recognized by other plant species including barley and wheat (Carter *et al.*, 2019; Sun *et al.*, 2017). Barley contains two *PBS1* orthologs that can be cleaved by AvrPphB, leading to the activation of defence responses by the NLR *AvrPphB Response1* (*PBR1*) (Carter *et al.*, 2019). The conservation of PBS1 can be exploited to expand the scope of RPS5-mediated ETI across different plant species and their specific pathogen interactors (Kim *et al.*, 2016). For example, expressing a modified soybean PBS1 ortholog containing a motif recognizable by the NIa protease of the soybean mosaic virus (SMV) in place of the standard AvrPphB cleavage site confers immunity to the virus (Helm *et al.*, 2019; Pottinger and Innes, 2020).

Recognition of AvrRpt2 cleavage of RIN4

Another T3SE protease for which NLR-mediated recognition has been dissected in detail is AvrRpt2. The relationship between AvrRpt2 and the cognate *Arabidopsis* CC-NLR RPS2 was first discovered in the mid-90s (Bent *et al.*, 1994; Innes *et al.*, 1993; Mindrinos *et al.*, 1994). The activation of RPS2-mediated defences by AvrRpt2 was later correlated with the elimination of RIN4 (Axtell and Staskawicz, 2003). In the absence of pathogen challenge, RIN4 physically associates with RPS2, maintaining it in an inactive state to preclude ETI signaling. After AvrRpt2 cleavage, RIN4 fragments are unable to maintain an interaction with RPS2 and can no longer abrogate RPS2-dependent HR (Coaker *et al.*, 2005; Day *et al.*, 2005; Day *et al.*, 2006) (Figure 2). However, elimination of RIN4 alone is not sufficient for AvrRpt2-induced activation of RPS2 (Toruno *et al.*, 2016). NONSPECIFIC DISEASE RESISTANCE1 (NDR1) is a PM-anchored immune regulator required for the full activation of multiple NLRs including RPS5 and RPS2 (Coppinger *et al.*, 2004). A physical interaction between NDR1 and RIN4 is required for RPS2 activation by AvrRpt2 (Day *et al.*, 2006). Unlike RPS2, NDR1 can also interact with the ACP3 fragment of RIN4 after cleavage by AvrRpt2 (Day *et al.*, 2006). Although the exact mechanism underlying the role of NDR1 remains unknown, it has been proposed that its interaction with RIN4 may protect RPS2 from negative regulation during infection(Day *et al.*, 2006).

AvrRpt2-induced defence responses have been described in other plant/pathogen species contexts. The MR5 CC-NLR from wild apple recognizes an AvrRpt2 homolog from the fireblight pathogen *Erwinia amylovora* based on its cleavage of apple *Md*RIN4 (Broggini *et al.*, 2014; Prokchorchik *et al.*, 2020; Vogt *et al.*, 2013). Unlike the *At*RIN4-RPS2 complex, *Md*RIN4 does not appear to inhibit MR5 auto-activation (Prokchorchik *et al.*, 2020). Rather, the *Md*RIN4 ACP3 cleavage fragment generated by AvrRpt2 activates

MR5 (Prokchorchik *et al.*, 2020). Ptr1 is a CC-NLR identified in the tomato-like nightshade *Solanum lycopersicoides* that also confers resistance to *P. syringae* expressing AvrRpt2 (Mazo-Molina *et al.*, 2020). Ptr1 recognition of AvrRpt2 variants correlates with their ability to eliminate tomato RIN4 proteins (Mazo-Molina *et al.*, 2019). Functional Ptr1 orthologs conferring resistance to AvrRpt2 also occur in *N. benthamiana* and potato (Mazo-Molina *et al.*, 2020; Mazo-Molina *et al.*, 2019). Based on the sequential and mechanistic diversity of RPS2, MR5 and Ptr1, these NLRs have likely arisen by convergent evolution to detect AvrRpt2 (Mazo-Molina *et al.*, 2020; Prokchorchik *et al.*, 2020; Toruno *et al.*, 2016).

Detection of HopX1 by ZAR1

A recent systematic study of ETI-inducing effectors revealed that the *Arabidopsis* CC-type NLR HopZ ACTIVATED RESISTANCE1 (ZAR1) confers immunity against a range of effectors including the HopX1 family (Laflamme *et al.*, 2020) (**Figure 2**). HopX1-induced activation of ZAR1 also requires the RLCKs HOPZ-ETI-DEFICIENT1 (ZED1) and SUPPRESSOR OF ZED1-D1 (SZE1), although cleavage of neither ZED1 nor SZE1 was detected (Martel *et al.*, 2020). As yet, no functional relationship has been established between HopX1-mediated cleavage of JAZ proteins and its activation of ZAR1 (Gimenez-Ibanez *et al.*, 2014; Martel *et al.*, 2020). Notably, *E. amylovora* HopX1 contributes to the onset of HR in cultivated tobacco (*Nicotiana tabacum*), while it suppresses it in *N. benthamiana* (Bocsanczy *et al.*, 2012). Additional experiments suggest that in *E. amylovora*'s native host, apple trees, HopX1 may also trigger HR (Bocsanczy *et al.*, 2012). This is in contrast to the observation that HopX1i (a HopX1 allele from *P. syringae*) does not trigger HR in Arabidopsis, despite the onset of ZAR1-dependent ETI (Laflamme *et al.*, 2020).

Recognition of HopB1 protease activity

HopB1 proteolytic cleavage of BAK1 also appears to be detected by plant NLRs (**Figure 2**). ETI responses induced by HopB1 are dependent on the presence of the 'helper' NLR ACTIVATED DISEASE RESISTANCE1 (ADR1) and its paralogs (Wu *et al.*, 2020). Helper NLRs do not directly recognize effectors but are required for the full activity of 'sensor' NLRs (Jubic *et al.*, 2019). These findings suggest that BAK1 may be 'guarded' by an as-yet unidentified sensor NLR, particularly as ADR1 and HopB1 do not appear to directly interact (Wu *et al.*, 2020).

Regulation of ETI-related HR by effector proteases

As outlined above, detection of effector proteases by NLRs can trigger ETI-dependent HR. However, some effector proteases also act to repress HR. One such example is AvrPphB, a member of the YopT family of *P. syringae* T3S cysteine protease effectors (Shao *et al.*, 2002). In addition to triggering RPS5-mediated ETI, AvrPphB also functions to suppress ETI launched upon detection of the effector AvrB (**Figure 3**). In the absence of AvrPphB, AvrB recruits the host receptor-like cytoplasmic kinase RPM1-INTERACTING PROTEIN KINASE (RIPK) to induce phosphorylation of RIN4, triggering ETI mediated by the NLR RESISTANCE TO P. SYRINGAE PV. MACULICOLA1 (PRM1)(Liu *et al.*, 2011; Mackey *et al.*, 2002). By directly targeting RIPK for cleavage, AvrPphB prevents phosphorylation of RIN4 thus avoiding RPM1 activation (Russell *et al.*, 2015).

HopN1 (formerly known as AvrPtoN) suppresses HR-related cell death in tobacco and tomato (Lopez-Solanilla *et al.*, 2004) and diminishes defence-associated ROS production and callose deposition in *Arabidopsis* (Rodríguez-Herva et al., 2012). Using *in vitro* pull-down assays followed by mass spectrometry, the tomato chloroplast protein PsbQ (Photosystem II oxygen-evolving complex protein 3) was identified as a binding partner of HopN1 (Rodríguez-Herva *et al.*, 2012) (**Figure 3**). PsbQ is required for full ROS production and HR in response to bacterial infection. Analysis of thylakoid samples from *N. benthamiana* revealed that degradation of PsbQ in the presence of HopN1 depends on its catalytic site remaining intact (Rodríguez-Herva *et al.*, 2012). This finding highlights the contribution of photosynthetic proteins to the immune response, as well as their vulnerability to effector proteases despite localization in the chloroplast.

Effector protease-mediated manipulation of mammalian innate immune signaling

Some families of T3SE proteases are conserved among plant and animal pathogens, albeit with differences in their substrate proteins (see "Effector proteases: evolutionary conservation and diversity" below for more details). This conservation, together with the similarities between the innate immune signaling pathways in metazoa and plants (Ausubel, 2005; Jones et al., 2016), makes it interesting to compare T3SE protease function in plants and animals. In both lineages, membrane-bound immune receptors detect PAMPs or DAMPs present in the extracellular environment and relay signals into cells via different signal transduction pathways, including mitogen-activated protein kinase (MAPK) signaling cascades. This induces a proinflammatory response in animals and PTI in plants (Ausubel, 2005). Similarly, in both

animals and plants, a large variety of distinct cytosolic NLR receptor proteins sense pathogen-associated perturbations in the cytosol (Jones *et al.*, 2016). Activated NLRs form higher order oligomers as modular platforms to initiate downstream signaling, including initiation of cell death programs (Dangl and Jones, 2019). In plants, cell death triggered by effector recognition is typically categorized as HR, but the mechanisms leading to the onset of cell death are not understood in as much detail as they are in animals (Pitsili *et al.*, 2020). In animals, distinct cell death pathways emitting different signals to the surrounding tissue have been defined (Galluzzi *et al.*, 2018; Jorgensen *et al.*, 2017). Apoptosis can be triggered by perturbations of the extracellular environment that are detected by a variety of plasma membrane receptors, including Tumor Necrosis Factor Receptor 1 (TNFR1), resulting in activation of the cysteine protease caspase-8 (**Figure 3**). Alternatively, apoptosis may be triggered by activation of caspase-9 as a result of mitochondrial outer membrane permeabilization induced by intracellular stress. Both pathways converge on the activation of the effector caspases -3 and -6, which cleave hundreds of protein substrates to orchestrate an orderly demise of the cell (Crawford *et al.*, 2012). Apoptosis eliminates cells during development or after cellular stress that exceeds the capacity for repair and is generally considered to be immunologically silent (Bedoui *et al.*, 2020).

Pyroptosis and necroptosis, in contrast, are highly inflammatory forms of cell death leading to immune cell recruitment (Bedoui *et al.*, 2020; Flores-Romero *et al.*, 2020; Galluzzi *et al.*, 2018). Pyroptosis is induced after activation of cytosolic NLRs, which triggers formation of higher order complexes termed inflammasomes that activate caspase-1. Alternatively, intracellular pathogen-derived LPS can activate caspase-4 and caspase-5 (Shi *et al.*, 2014). On activation, all three inflammatory caspases cleave a number of substrates including gasdermin-D (GSDMD) (Agard *et al.*, 2010; Shi *et al.*, 2015). The N-terminal fragment of GSDMD oligomerizes and forms pores in the cell membrane, resulting in the release of proinflammatory cytokines and subsequent cell death (Bedoui *et al.*, 2020; Flores-Romero *et al.*, 2020). Necroptosis is a caspase-independent pro-inflammatory form of cell death initiated by plasma membrane receptors such as TNFR1 and mediated by the receptor interacting serine-threonine kinases 1 (RIPK1) and RIPK3, which phosphorylates the protein MLKL (mixed-lineage kinase domain-like) (Bedoui *et al.*, 2020; Galluzzi *et al.*, 2018) (**Figure 3**). Phosphorylated MLKL assembles into large pore-forming oligomers that cause plasma membrane rupture and release of a multitude of pro-inflammatory cellular DAMPs (Flores-Romero *et al.*, 2020).

These cell death pathways are remarkably interconnected, with caspase-8 at the nexus (Bedoui *et al.*, 2020; Fritsch *et al.*, 2019). In the extrinsic pathway of apoptosis, plasma membrane receptor stimulation

results in activation of caspase-8, which cleaves RIPK1 and RIPK3 and thereby prevents necroptosis. Thus, necroptosis can be considered as a backup-program to induce cell death when apoptosis to extrinsic stimuli is blocked (Bedoui *et al.*, 2020; Jorgensen *et al.*, 2017). Inactive caspase-8 further triggers inflammasome formation and caspase-1 activation resulting in cell death by pyroptosis when necroptosis is prevented by RIPK3 or MLKL ablation (Fritsch *et al.*, 2019). Thus, the mammalian cell death pathways not only guard the innate immune signaling pathways, but also each other against pathogen interference (Bedoui *et al.*, 2020; Jorgensen *et al.*, 2017). Bacterial pathogens therefore must not only prevent proinflammatory responses, but also avoid the trip wires of mutually cross-loaded cell death programs (**Figure 3**).

Two examples illustrate how T3SE proteases contribute to overcome this formidable challenge (**Table 1**). Enteropathogenic *Escherichia coli* (EPEC), an attaching and effacing bacterium that causes persistent diarrhea primarily in children, uses a variety of T3SEs to simultaneously suppress immune and cell death signaling (Shenoy *et al.*, 2018). This includes two zinc metalloproteases, NIeC and NIeD (**Figure 3**) that interfere with the pro-inflammatory NF-κB signaling. Specifically, NIeC attacks pro-inflammatory signaling pathways by cleavage and inactivation of 3 subunits of NF-κB (Baruch *et al.*, 2011; Pearson *et al.*, 2011; Yen *et al.*, 2010), and also cut the acetyltransferase p300 that acts as transcriptional co-activator for many genes, including those regulated by NF-κB (Shames *et al.*, 2011). The second metalloprotease, NIeD, cleaves and inactivates the MAPKs c-Jun amino-terminal kinase (JNK) and p38 that are involved in pro-inflammatory and apoptotic signaling (Baruch *et al.*, 2011). A third T3SE protease, the cysteine protease EspL, targets RIPK1 and RIPK3 to prevent necroptosis (Pearson *et al.*, 2011) (**Figure 3**). The gram negative bacterium *Shigella flexneri*, which causes diarrhea in humans, similarly prevents necroptotic cell death by degradation of RHIM-containing proteins, including RIPK1 and RIPK3, with the EspL homolog OspD3 (Ashida *et al.*, 2020).

Comparison of known T3SE protease functions in modulating immune signaling pathways in plants and mammals reveals striking similarities. In both lineages, substrates that allow T3SE proteases to interfere with PRR-activated MAPK signaling pathways have been identified. In plants, numerous substrates of T3SE proteases in PRR-mediated signaling pathways are guarded by NLRs, resulting in HR cell death and a strain-specific response (Pitsili *et al.*, 2020). Similarly, in metazoa, pathogen-mediated manipulation of cellular processes is sensed by cytosolic NLRs, triggering enhanced pro-inflammatory responses including cell death in analogy to plant ETI and HR (Lopes Fischer *et al.*, 2020). Identification of specific T3SE protease targets in mammals has shown how these effectors allow pathogens to manipulate these cell-death

inducing pathways for their benefit. One conspicuous difference in plants is that, in contrast to the wealth of knowledge in mammals, the mechanism(s) by which plant HR cell death is executed remain poorly understood. Several plant proteases of different mechanistic classes, as well as autophagy and the UPS, have been implicated in the onset of regulated cell death induced by different triggers, but so far comparatively few substrates are known (Balakireva and Zamyatnin, 2019; Salguero-Linares and Coll, 2019). Consequently, the molecular mechanisms of how T3SE proteases, and in facts T3SEs in general, suppress plant HR-related cell death have remained elusive. Indications for such effector-mediated suppression of HR have nevertheless been reported (Guo et al., 2009; Jamir et al., 2004; Wei et al., 2018).

Effector proteases: evolutionary conservation and diversity

Identification of T3SE proteases requires evidence of type III secretion, knowledge of host targets or of effects on the host immune response (*e.g.* dampening of PTI or ETI activation) (Lindeberg *et al.*, 2005), identification of catalytic residues/triad, as well as *in planta* or *in vitro* evidence of protease activity. Pto DC3000 has been used as a model pathogen for four decades (Xin *et al.*, 2018). As highlighted above, the Pto DC3000 genome is predicted to encode four T3SE proteases: HopB1, HopC1, HopN1 and HopX1 (**Table 1**). Another potential T3SE protease is HopZ1, although its protease activity appears to be very weak *in vitro* and it may primarily act as an acetyltransferase (Zhou *et al.*, 2011). Other pathovars of *P. syringae* code for additional T3SE proteases, such as for example AvrPphB and AvrRpt2, both of which have been among the most studied T3SE proteases, as highlighted above (**Table 1**).

Analysis of the genomes of 494 *P. syringae* belonging to different pv. groups (Dillon *et al.*, 2019; Markowitz *et al.*, 2012; Wattam *et al.*, 2014) indicates that HopX1 (formerly known as AvrPphE) homologs are widely distributed across 308 different strains, including a variety of pathovars (Dillon *et al.*, 2019; Studholme *et al.*, 2009). The broad distribution of HopX1 might reflect its importance to facilitate *P. syringae* entry inside host tissue *via* stomata (Gimenez-Ibanez *et al.*, 2014), an essential first step in the infection process of *P. syringae* (Xin *et al.*, 2018). Interestingly, variations in HopX1 sequences among different races of *P. syringae* pv. *phaseolicola* affect both strain virulence and host ability to trigger ETI in bean plants (Stevens *et al.*, 1998). This highlights the fine-tuning mechanisms at play in effector protease sequence, target selection and recognition by host NLRs.

Other Pto DC3000 T3SE proteases such as HopC1, HopN1 and HopB1 are also broadly distributed among *P. syringae* strains, with putative homologs found in 115, 74 and 66 strains, respectively (Dillon *et al.*,

2019). HopN1 appears to be particularly important as, together with 7 other T3SE, it is part of a so-called minimal repertoire of Pto DC3000 effectors needed to restore virulence of a Pto DC3000 mutant strain in which 28 effectors have been deleted (Cunnac et al., 2011). Although Pto DC3000 codes for all 4 proteases in its genome, only five other P. syringae strains code for the same 4 effector proteases, including one other Pto strain and some strains of P. syringae pv. maculicola (Pma). Interestingly, some of these Pma strains are thought to belong to the same phylogenetic group as Pto DC3000 (Clarke et al., 2010), perhaps highlighting that the concept of pathovar does not necessarily correlate with phylogenetic relationship (Berge et al., 2014). AvrRpt2 (initially isolated from Pto JL1065) is arguably one of the most studied T3SE proteases (Innes et al., 1993). Analysis of the 494 genome sequences of P. syringae suggests that only 25 of these strains code for potential AvrRpt2 homologs (Dillon et al., 2019). These 25 strains belong to different pathovar groups, indicating that AvrRpt2 function as a virulence factor is not specific to one host type. Notably, AvrRpt2 is also encoded by the genomes of other plant pathogens (e.g. Ralstonia solanacearum or E. amylovora), as well as symbiotic bacteria (e.q. Mesorhizobium huakuii and Sinorhizobium medicae) (Eschen-Lippold et al., 2016). AvrRpt2 from E. amylovora in particular also acts as a virulence factor during infection of its native host (pear and apple trees) (Vogt et al., 2013; Zhao et al., 2006). However, a single amino acid change (Cys156Ser) found in natural variants of E. amylovora AvrRpt2 is sufficient to change its recognition by cognate NLRs in apple (Vogt et al., 2013). Similarly, differences in the substrate specificity of AvrRpt2 homologs found in pathogenic and non-pathogenic bacteria have been found (Eschen-Lippold et al., 2016). These findings highlight how sequence differences among putative AvrRpt2 homologs may be relevant in terms of virulence/avirulence. Other Pto DC3000 T3SE proteases are also conserved among plant pathogens. For example, HopX1 homologs have been identified in R. solanacerum, Xanthomonas campestris and E. amylovora (Bocsanczy et al., 2012; Nimchuk et al., 2007). Proteases with sequence similarities to HopX1 are also encoded by animal pathogens such as Legionella pneumophila (the causative agent of 'Legionnaire's disease') (Nimchuk et al., 2007). However, it is expected that the substrates of the potential homologs have likely diverged (Nimchuk et al., 2007). Such widespread distribution of effector protease across plant and animal pathogens is also found among YopT family members (Table 1), which includes YopT from Yersinia pestis (the causative agent of bubonic plague), as well as HopC1, HopN1, AvrPphB (P. syringae pv. phaseolicola), NopT (Sinorhizobium fredii

NGR234) and RipT in R. solanacearum (Dowen et al., 2009; Shao et al., 2002). All YopT family members

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

have a conserved catalytic triad, as well as similar secondary structures, but are otherwise variable in sequence (Dowen et al., 2009; Shao et al., 2002). YopT family members from plant pathogens exhibit autoproteolytic activity which is essential for virulence (Dai et al., 2008; Dowen et al., 2009; Shao et al., 2002), as well as recognition by cognate NLRs (Ade et al., 2007; Shao et al., 2003; Shao et al., 2002). However, in animal pathogens such as Y. Pestis, YopT does not undergo self-cleavage (Shao et al., 2002). Similarly to HopX1, it is expected that the substrates of YopT family members have diverged between plant and animal pathogens. This is supported by the fact that (i) expression of AvrPphB in mammalian cell lines does not trigger the same cytotoxic phenotype as expression of YopT (Shao et al., 2002); and (ii) YopT's main target appears to be RhoA, a member of the GTPase family of proteins (Shao et al., 2003; Shao et al., 2002), while AvrPphB's main target in Arabidopsis is the unrelated protein kinase AvrPphB SUSCEPTIBLE PROTEIN1 (PBS1) (Shao et al., 2003). Furthermore, based on the crystal structure of AvrPphB, some features of the substrate binding sites of YopT family members are not conserved (Zhu et al., 2004), even within plant pathogens. Hence, YopT family members such as HopC1, HopN1, AvrPphB and NopT could target different protein substrates (Zhu et al., 2004). Interestingly, symbiotic bacteria (e.g. Rhizobium species) also code for YopT family members, but again, these probably target distinct host proteins. For example, Sinorhizobium NopT (formerly known as Y4zC) does not cleave PBS1 (Zhu et al., 2004).

A more contentious case of potential effector proteases found among plant and animal pathogens are members of the YopJ family (reviewed in (Ma and Ma, 2016)). YopJ family members may act as both or either acetyltransferases and/or proteases. The founding member of this family, YopJ from *Y. pestis*, appears to act, at least in part, by decreasing the amount of ubiquitin and SUMO chains *in vivo*, suggesting that it may have ubiquitin-like protease activity (Orth *et al.*, 2000; Sweet *et al.*, 2007; Zhou *et al.*, 2005). However, it is unclear if this is directly due to YopJ activity as a protease, or if it is a secondary effect of YopJ activity on another substrate, perhaps via acetylation since YopJ acts as an acetyltransferase (Meinzer *et al.*, 2012; Mukherjee *et al.*, 2006; Paquette *et al.*, 2012). Nevertheless, some members of the YopJ family, including HopZ1a and HopZ3 (**Table 1**) from *P. syringae* pv. *syringae* and pv. *glycinea* (Ma *et al.*, 2006), as well as XopJ from *X. campestris* pv. *vesicatoria* (Ustun and Bornke, 2015), have been shown to exhibit some degree of protease activity (Ma *et al.*, 2006; Zhou *et al.*, 2011).

In sum, the evolutionary conservation of effector protease families such as YopT across animal and plant pathogens is testament to their important roles as effectors. Nevertheless, T3SE proteases are versatile actors in the interplay between pathogenicity and immunity upon infection of a host, as outlined in sections above. Sequence variation and divergence in function enables the recognition of different host

substrates, but also allows for differential recognition by hosts who have evolved cognate receptors. Notably, despite the evolutionary relevance of T3SE proteases and mechanistic details underlying their activity and recognition, overall, relatively little is still known about their targets at the proteome-wide level (**Box 1**). In recent years, mass spectrometry-based methods have emerged as a promising tool to address these questions in a largely unbiased manner (Demir *et al.*, 2018). Specific tools for protease substrate identification have been developed (**Box 1**), firmly establishing degradomics as a subfield in proteomics (Lopez-Otin and Overall, 2002). In biomedical research, degradomics has been extensively used to define caspase substrates (Agard *et al.*, 2010), caspase specificity (Julien and Wells, 2017), proteolytic mechanisms underlying cell death (Crawford *et al.*, 2012) and is increasingly used to characterize host manipulation by viral and bacterial proteases (Marshall *et al.*, 2017). However, to the best of our knowledge, no similar applications to define the substrates of plant effector protease have been reported. We anticipate that our understanding of proteolytic processes and protease function in plant cell death and pathology will similarly benefit from degradomics approaches, particularly as recent methodological advances have increased sensitivity and now enable analysis of samples that yield only microgram amounts of proteins (Shema *et al.*, 2018; Weng *et al.*, 2019).

Conclusion

The intriguing mechanisms underlying T3SE protease function highlight how phytopathogenic bacteria deploy these enzymes to undermine plant immunity, indeed cutting the line from signal perception to response. Equally intriguing is how plants guard T3SE protease targets and use decoys to detect T3SE protease activity, setting an emergency "red" line to swift and massive responses that in turn are targeted by additional effectors including proteases. However, our proteome-wide knowledge of T3SE protease substrate repertoires, and therefore also of their function, is incomplete even in the extensively studied *Arabidopsis-Pseudomonas* model pathosystem. In other plant-microbe interactions, this knowledge is even more fragmented. Similarly to other T3SEs, we are currently lacking information on complete substrate repertoires, enzymatic properties such as sequence specificity, and information of similarities and differences among homologous T3SE proteases in both pathogenic and non-pathogenic microbes. We believe that sensitive unbiased approaches, including the mass spectrometry-based techniques outlined above (Box 1), will reveal new T3SE protease targets and further inform on plant immune responses (Toruno *et al.*, 2016). In addition, clarification of their substrate specificity will facilitate decoy engineering of host proteins guarded by specific NLRs (Kourelis *et al.*, 2016). For instance, seminal work demonstrated

that substitution of the AvrPphB effector cleavage site in *A. thaliana* PBS1, which is guarded by the NLR RPS5, enables recognition of other pathogen bacterial and viral effector proteases and thereby confers resistance to new pathogens (Kim *et al.*, 2016). This system has already been translated to soybean as a crop system (Pottinger and Innes, 2020), suggesting that T3SE protease activity can be exploited more widely for engineering disease-resistant crops.

Acknowledgements

P.F.H. acknowledges financial support by the European Research Council with funding from the European Union's Horizon 2020 program (grant ID: 639905) and by the Deutsche Forschungsgemeinschaft (DFG, project ID: SFB-1403–414786233). E.G. acknowledges financial support by Science Foundation Ireland (grant 13/IA/1870) and the Maynooth University Kathleen Lonsdale Institute for Human Health Research. B.C.M is supported by an Irish Research Council PhD scholarship (GOIPG/2017/2). The authors confirm that they have no conflict of interest.

Author contributions

E.G. and P.F.H. conceptualized the review; B.C.M and M.M. composed figures and tables; All authors performed literature research, drafted sections of the manuscript, edited and approved the final version.

References

- Ade J, DeYoung BJ, Golstein C, Innes RW. 2007. Indirect activation of a plant nucleotide binding site-
- leucine-rich repeat protein by a bacterial protease. Proceedings of the National Academy of Sciences of
- 503 the United States of America **104**, 2531-2536.
- Agard NJ, Maltby D, Wells JA. 2010. Inflammatory stimuli regulate caspase substrate profiles. Molecular
- and Cellular Proteomics 9, 880-893.
- 506 Ashida H, Sasakawa C, Suzuki T. 2020. A unique bacterial tactic to circumvent the cell death crosstalk
- induced by blockade of caspase-8. EMBO Journal **39**, e104469.
- Ausubel FM. 2005. Are innate immune signaling pathways in plants and animals conserved? Nature
- 509 Immunology **6**, 973-979.
- 510 Axtell MJ, Chisholm ST, Dahlbeck D, Staskawicz BJ. 2003. Genetic and molecular evidence that the
- 511 Pseudomonas syringae type III effector protein AvrRpt2 is a cysteine protease. Molecular Microbiology
- **49**, 1537-1546.
- 513 Axtell MJ, Staskawicz BJ. 2003. Initiation of RPS2-specified disease resistance in Arabidopsis is coupled to
- the AvrRpt2-directed elimination of RIN4. Cell **112**, 369-377.
- 515 Balakireva AV, Zamyatnin AA, Jr. 2019. Cutting Out the Gaps Between Proteases and Programmed Cell
- 516 Death. Frontiers in Plant Science **10**, 704.
- Baruch K, Gur-Arie L, Nadler C, Koby S, Yerushalmi G, Ben-Neriah Y, Yogev O, Shaulian E, Guttman C,
- 518 Zarivach R, Rosenshine I. 2011. Metalloprotease type III effectors that specifically cleave JNK and NF-κB.
- 519 EMBO Journal **30**, 221-231.
- 520 **Bedoui S, Herold MJ, Strasser A**. 2020. Emerging connectivity of programmed cell death pathways and its
- 521 physiological implications. Nature Reviews: Molecular Cell Biology **21**, 678-695.
- 522 Bent AF, Kunkel BN, Dahlbeck D, Brown KL, Schmidt R, Giraudat J, Leung J, Staskawicz BJ. 1994. RPS2 of
- 523 Arabidopsis thaliana: a leucine-rich repeat class of plant disease resistance genes. Science **265**, 1856-1860.
- 524 Berens ML, Berry HM, Mine A, Argueso CT, Tsuda K. 2017. Evolution of Hormone Signaling Networks in
- Plant Defense. Annual Review of Phytopathology **55**, 401-425.
- Berge O, Monteil CL, Bartoli C, Chandeysson C, Guilbaud C, Sands DC, Morris CE. 2014. A user's guide to
- a data base of the diversity of Pseudomonas syringae and its application to classifying strains in this
- 528 phylogenetic complex. PLoS One 9, e105547.
- 529 Bigeard J, Colcombet J, Hirt H. 2015. Signaling mechanisms in pattern-triggered immunity (PTI). Molecular
- 530 Plant **8**, 521-539.
- 531 Bocsanczy AM, Schneider DJ, DeClerck GA, Cartinhour S, Beer SV. 2012. HopX1 in Erwinia amylovora
- functions as an avirulence protein in apple and is regulated by HrpL. Journal of Bacteriology **194**, 553-560.
- 533 Bogaert A, Gevaert K. 2020. Protein amino-termini and how to identify them. Expert Review of Proteomics
- **17**, 581-594.
- 535 Broggini GA, Wöhner T, Fahrentrapp J, Kost TD, Flachowsky H, Peil A, Hanke MV, Richter K, Patocchi A,
- 536 **Gessler C.** 2014. Engineering fire blight resistance into the apple cultivar 'Gala' using the FB MR5 CC-NBS-
- 537 LRR resistance gene of Malus × robusta 5. Plant Biotechnology Journal **12**, 728-733.
- 538 Carter ME, Helm M, Chapman AVE, Wan E, Restrepo Sierra AM, Innes RW, Bogdanove AJ, Wise RP. 2019.
- 539 Convergent Evolution of Effector Protease Recognition by Arabidopsis and Barley. Molecular Plant
- 540 Microbe Interactions **32**, 550-565.
- 541 Chisholm ST, Dahlbeck D, Krishnamurthy N, Day B, Sjolander K, Staskawicz BJ. 2005. Molecular
- 542 characterization of proteolytic cleavage sites of the Pseudomonas syringae effector AvrRpt2. Proceedings
- of the National Academy of Sciences of the United States of America 102, 2087-2092.
- 544 Clarke CR, Cai R, Studholme D, Guttman DS, Vinatzer BA. 2010. Pseudomonas syringae Strains Naturally
- Lacking the Classical P. syringae hrp/hrc Locus Are Common Leaf Colonizers Equipped with an Atypical
- Type III Secretion System. Molecular Plant Microbe Interactions 23, 198-210.

- 547 Coaker G, Falick A, Staskawicz B. 2005. Activation of a phytopathogenic bacterial effector protein by a
- eukaryotic cyclophilin. Science **308**, 548-550.
- 549 Coaker G, Zhu G, Ding Z, Van Doren SR, Staskawicz B. 2006. Eukaryotic cyclophilin as a molecular switch
- for effector activation. Molecular Microbiology **61**, 1485-1496.
- Coppinger P, Repetti PP, Day B, Dahlbeck D, Mehlert A, Staskawicz BJ. 2004. Overexpression of the
- 552 plasma membrane-localized NDR1 protein results in enhanced bacterial disease resistance in Arabidopsis
- thaliana. Plant Journal **40**, 225-237.
- 554 Crawford ED, Seaman JE, Barber AE, 2nd, David DC, Babbitt PC, Burlingame AL, Wells JA. 2012.
- 555 Conservation of caspase substrates across metazoans suggests hierarchical importance of signaling
- pathways over specific targets and cleavage site motifs in apoptosis. Cell Death and Differentiation 19,
- 557 2040-2048.
- 558 Cui F, Wu S, Sun W, Coaker G, Kunkel B, He P, Shan L. 2013. The Pseudomonas syringae type III effector
- 559 AvrRpt2 promotes pathogen virulence via stimulating Arabidopsis auxin/indole acetic acid protein
- 560 turnover. Plant Physiology **162**, 1018-1029.
- 561 Cui H, Tsuda K, Parker JE. 2015. Effector-triggered immunity: from pathogen perception to robust
- defense. Annual Review of Plant Biology **66**, 487-511.
- 563 Cunnac S, Chakravarthy S, Kvitko BH, Russell AB, Martin GB, Collmer A. 2011. Genetic disassembly and
- 564 combinatorial reassembly identify a minimal functional repertoire of type III effectors in Pseudomonas
- 565 syringae. Proceedings of the National Academy of Sciences of the United States of America 108, 2975-
- 566 2980.
- Dai WJ, Zeng Y, Xie ZP, Staehelin C. 2008. Symbiosis-promoting and deleterious effects of NopT, a novel
- type 3 effector of Rhizobium sp. strain NGR234. Journal of Bacteriology 190, 5101-5110.
- 569 **Dangl JL, Jones JDG**. 2019. A pentangular plant inflammasome. Science **364**, 31-32.
- Day B, Dahlbeck D, Huang J, Chisholm ST, Li D, Staskawicz BJ. 2005. Molecular basis for the RIN4 negative
- regulation of RPS2 disease resistance. Plant Cell **17**, 1292-1305.
- 572 Day B, Dahlbeck D, Staskawicz BJ. 2006. NDR1 interaction with RIN4 mediates the differential activation
- of multiple disease resistance pathways in Arabidopsis. Plant Cell 18, 2782-2791.
- 574 **Demir F, Niedermaier S, Villamor JG, Huesgen PF**. 2018. Quantitative proteomics in plant protease
- substrate identification. New Phytologist **218**, 936-943.
- 576 Dillon MM, Almeida RND, Laflamme B, Martel A, Weir BS, Desveaux D, Guttman DS. 2019. Molecular
- 577 Evolution of Pseudomonas syringae Type III Secreted Effector Proteins. Frontiers in Plant Science 10, 418.
- Dissmeyer N, Rivas S, Graciet E. 2018. Life and death of proteins after protease cleavage: protein
- degradation by the N-end rule pathway. New Phytologist **218**, 929-935.
- Dodds PN, Rathjen JP. 2010. Plant immunity: towards an integrated view of plant-pathogen interactions.
- 581 Nature Reviews: Genetics **11**, 539-548.
- Dowen RH, Engel JL, Shao F, Ecker JR, Dixon JE. 2009. A family of bacterial cysteine protease type III
- 583 effectors utilizes acylation-dependent and -independent strategies to localize to plasma membranes.
- Journal of Biological Chemistry **284**, 15867-15879.
- 585 Eschen-Lippold L, Jiang X, Elmore JM, Mackey DM, Shan L, Coaker GL, Scheel D, Lee J. 2016. Bacterial
- AvrRpt2-like cysteine proteases block activation of the Arabidopsis mitogen-activated protein kinases,
- 587 MPK4 and MPK11. Plant Physiology **171**, 2223-2238.
- 588 Figaj D, Ambroziak P, Przepiora T, Skorko-Glonek J. 2019. The Role of Proteases in the Virulence of Plant
- Pathogenic Bacteria. International Journal of Molecular Science **20**, 672.
- Flores-Romero H, Ros U, Garcia-Saez AJ. 2020. Pore formation in regulated cell death. EMBO Journal 39,
- 591 e105753
- 592 Fritsch M, Günther SD, Schwarzer R, Albert MC, Schorn F, Werthenbach JP, Schiffmann LM, Stair N,
- 593 Stocks H, Seeger JM, Lamkanfi M, Krönke M, Pasparakis M, Kashkar H. 2019. Caspase-8 is the molecular
- switch for apoptosis, necroptosis and pyroptosis. Nature **575**, 683-687.

- 595 Galluzzi L, Vitale I, Aaronson SA, Abrams JM, Adam D, Agostinis P, Alnemri ES, Altucci L, Amelio I,
- Andrews DW, Annicchiarico-Petruzzelli M, Antonov AV, Arama E, Baehrecke EH, Barlev NA, Bazan NG,
- 597 Bernassola F, Bertrand MJM, Bianchi K, Blagosklonny MV, Blomgren K, Borner C, Boya P, Brenner C,
- 598 Campanella M, Candi E, Carmona-Gutierrez D, Cecconi F, Chan FK, Chandel NS, Cheng EH, Chipuk JE,
- 599 Cidlowski JA, Ciechanover A, Cohen GM, Conrad M, Cubillos-Ruiz JR, Czabotar PE, D'Angiolella V,
- Dawson TM, Dawson VL, De Laurenzi V, De Maria R, Debatin KM, DeBerardinis RJ, Deshmukh M, Di
- Daniele N, Di Virgilio F, Dixit VM, Dixon SJ, Duckett CS, Dynlacht BD, El-Deiry WS, Elrod JW, Fimia GM,
- Fulda S, Garcia-Saez AJ, Garg AD, Garrido C, Gavathiotis E, Golstein P, Gottlieb E, Green DR, Greene LA,
- 603 Gronemeyer H, Gross A, Hajnoczky G, Hardwick JM, Harris IS, Hengartner MO, Hetz C, Ichijo H, Jaattela
- 604 M, Joseph B, Jost PJ, Juin PP, Kaiser WJ, Karin M, Kaufmann T, Kepp O, Kimchi A, Kitsis RN, Klionsky DJ,
- 605 Knight RA, Kumar S, Lee SW, Lemasters JJ, Levine B, Linkermann A, Lipton SA, Lockshin RA, Lopez-Otin
- 606 C, Lowe SW, Luedde T, Lugli E, MacFarlane M, Madeo F, Malewicz M, Malorni W, Manic G, Marine JC,
- 607 Martin SJ, Martinou JC, Medema JP, Mehlen P, Meier P, Melino S, Miao EA, Molkentin JD, Moll UM,
- 608 Munoz-Pinedo C, Nagata S, Nunez G, Oberst A, Oren M, Overholtzer M, Pagano M, Panaretakis T,
- Pasparakis M, Penninger JM, Pereira DM, Pervaiz S, Peter ME, Piacentini M, Pinton P, Prehn JHM,
- Puthalakath H, Rabinovich GA, Rehm M, Rizzuto R, Rodrigues CMP, Rubinsztein DC, Rudel T, Ryan KM,
- Sayan E, Scorrano L, Shao F, Shi Y, Silke J, Simon HU, Sistigu A, Stockwell BR, Strasser A, Szabadkai G,
- Tait SWG, Tang D, Tavernarakis N, Thorburn A, Tsujimoto Y, Turk B, Vanden Berghe T, Vandenabeele P,
- Vander Heiden MG, Villunger A, Virgin HW, Vousden KH, Vucic D, Wagner EF, Walczak H, Wallach D,
- Wang Y, Wells JA, Wood W, Yuan J, Zakeri Z, Zhivotovsky B, Zitvogel L, Melino G, Kroemer G. 2018.
- Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death
- 616 2018. Cell Death and Differentiation **25**, 486-541.
- 617 **Gimenez-Ibanez S, Boter M, Fernandez-Barbero G, Chini A, Rathjen JP, Solano R**. 2014. The bacterial
- effector HopX1 targets JAZ transcriptional repressors to activate jasmonate signaling and promote
- infection in Arabidopsis. PLoS Biology 12, e1001792.
- 620 **Glazebrook J.** 2005. Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens.
- Annual Review of Phytopathology 43, 205-227.
- 622 Goslin K, Eschen-Lippold L, Naumann C, Linster E, Sorel M, Klecker M, de Marchi R, Kind A, Wirtz M, Lee
- **J, Dissmeyer N, Graciet E**. 2019. Differential N-end Rule Degradation of RIN4/NOI Fragments Generated
- by the AvrRpt2 Effector Protease. Plant Physiology **180**, 2272-2289.
- 625 Guo M, Tian F, Wamboldt Y, Alfano JR. 2009. The majority of the type III effector inventory of
- Pseudomonas syringae pv. tomato DC3000 can suppress plant immunity. Molecular Plant Microbe
- 627 Interactions **22**, 1069-1080.
- Helm M, Qi M, Sarkar S, Yu H, Whitham SA, Innes RW. 2019. Engineering a Decoy Substrate in Soybean
- to Enable Recognition of the Soybean Mosaic Virus NIa Protease. Molecular Plant Microbe Interactions
- **32**, 760-769.
- 631 Hickman R, Van Verk MC, Van Dijken AJH, Mendes MP, Vroegop-Vos IA, Caarls L, Steenbergen M, Van
- der Nagel I, Wesselink GJ, Jironkin A, Talbot A, Rhodes J, De Vries M, Schuurink RC, Denby K, Pieterse
- 633 CMJ, Van Wees SCM. 2017. Architecture and Dynamics of the Jasmonic Acid Gene Regulatory Network.
- 634 Plant Cell **29**, 2086-2105.
- 635 Holdsworth MJ, Vicente J, Sharma G, Abbas M, Zubrycka A. 2020. The plant N-degron pathways of
- ubiquitin-mediated proteolysis. Journal of Integrative Plant Biology **62**, 70-89.
- Hou S, Jamieson P, He P. 2018. The cloak, dagger, and shield: proteases in plant-pathogen interactions.
- 638 Biochemical Journal **475**, 2491-2509.
- 639 Hou S, Liu Z, Shen H, Wu D. 2019. Damage-Associated Molecular Pattern-Triggered Immunity in Plants.
- 640 Frontiers in Plant Science **10**.

- Innes RW, Bent AF, Kunkel BN, Bisgrove SR, Staskawicz BJ. 1993. Molecular analysis of avirulence gene
- avrRpt2 and identification of a putative regulatory sequence common to all known Pseudomonas syringae
- avirulence genes. Journal of Bacteriology **175**, 4859-4869.
- Jamir Y, Guo M, Oh HS, Petnicki-Ocwieja T, Chen S, Tang X, Dickman MB, Collmer A, Alfano JR. 2004.
- 645 Identification of Pseudomonas syringae type III effectors that can suppress programmed cell death in
- plants and yeast. Plant Journal 37, 554-565.
- Jones JD, Vance RE, Dangl JL. 2016. Intracellular innate immune surveillance devices in plants and animals.
- 648 Science **354**.
- Jorgensen I, Rayamajhi M, Miao EA. 2017. Programmed cell death as a defence against infection. Nature
- 650 Reviews: Immunology **17**, 151-164.
- Jubic LM, Saile S, Furzer OJ, El Kasmi F, Dangl JL. 2019. Help wanted: helper NLRs and plant immune
- responses. Current Opinion in Plant Biology **50**, 82-94.
- Julien O, Wells JA. 2017. Caspases and their substrates. Cell Death and Differentiation 24, 1380-1389.
- Kadota Y, Sklenar J, Derbyshire P, Stransfeld L, Asai S, Ntoukakis V, Jones JD, Shirasu K, Menke F, Jones
- **A, Zipfel C**. 2014. Direct regulation of the NADPH oxidase RBOHD by the PRR-associated kinase BIK1 during
- 656 plant immunity. Molecular Cell **54**, 43-55.
- Khan M, Seto D, Subramaniam R, Desveaux D. 2018. Oh, the places they'll go! A survey of phytopathogen
- effectors and their host targets. Plant Journal 93, 651-663.
- 659 Kim HS, Desveaux D, Singer AU, Patel P, Sondek J, Dangl JL. 2005a. The Pseudomonas syringae effector
- 660 AvrRpt2 cleaves its C-terminally acylated target, RIN4, from Arabidopsis membranes to block RPM1
- activation. Proceedings of the National Academy of Sciences of the United States of America 102, 6496-
- 662 6501.
- Kim MG, da Cunha L, McFall AJ, Belkhadir Y, DebRoy S, Dangl JL, Mackey D. 2005b. Two Pseudomonas
- syringae type III effectors inhibit RIN4-regulated basal defense in Arabidopsis. Cell **121**, 749-759.
- 665 Kim SH, Qi D, Ashfield T, Helm M, Innes RW. 2016. Using decoys to expand the recognition specificity of a
- plant disease resistance protein. Science **351**, 684-687.
- 667 Kourelis J, van der Hoorn RA, Sueldo DJ. 2016. Decoy Engineering: The Next Step in Resistance Breeding.
- 668 Trends in Plant Science **21**, 371-373.
- 669 Kourelis J, van der Hoorn RAL. 2018. Defended to the Nines: 25 Years of Resistance Gene Cloning
- 670 Identifies Nine Mechanisms for R Protein Function. Plant Cell **30**, 285-299.
- Laflamme B, Dillon MM, Martel A, Almeida RND, Desveaux D, Guttman DS. 2020. The pan-genome
- effector-triggered immunity landscape of a host-pathogen interaction. Science **367**, 763-768.
- 673 Langin G, Gouguet P, Ustun S. 2020. Microbial Effector Proteins A Journey through the Proteolytic
- Landscape. Trends in Microbiology 28, 523-535.
- 675 Li L, Kim P, Yu L, Cai G, Chen S, Alfano JR, Zhou JM. 2016. Activation-Dependent Destruction of a Co-
- 676 receptor by a Pseudomonas syringae Effector Dampens Plant Immunity. Cell Host Microbe 20, 504-514.
- 677 Lim MT, Kunkel BN. 2004. The Pseudomonas syringae type III effector AvrRpt2 promotes virulence
- independently of RIN4, a predicted virulence target in Arabidopsis thaliana. Plant Journal **40**, 790-798.
- 679 Lindeberg M, Stavrinides J, Chang JH, Alfano JR, Collmer A, Dangl JL, Greenberg JT, Mansfield JW,
- 680 Guttman DS. 2005. Proposed guidelines for a unified nomenclature and phylogenetic analysis of type III
- Hop effector proteins in the plant pathogen Pseudomonas syringae. Molecular Plant Microbe Interactions
- 682 **18**, 275-282.
- 683 Liu J, Elmore JM, Lin ZJ, Coaker G. 2011. A receptor-like cytoplasmic kinase phosphorylates the host target
- RIN4, leading to the activation of a plant innate immune receptor. Cell Host Microbe 9, 137-146.
- Liu Y, Ren D, Pike S, Pallardy S, Gassmann W, Zhang S. 2007. Chloroplast-generated reactive oxygen
- species are involved in hypersensitive response-like cell death mediated by a mitogen-activated protein
- 687 kinase cascade. Plant Journal **51**, 941-954.

- 688 Lopes Fischer N, Naseer N, Shin S, Brodsky IE. 2020. Effector-triggered immunity and pathogen sensing
- 689 in metazoans. Nature Microbiology 5, 14-26.
- 690 **Lopez-Otin C, Overall CM**. 2002. Protease degradomics: a new challenge for proteomics. Nature Reviews:
- 691 Molecular Cell Biology **3**, 509-519.
- Lopez-Solanilla E, Bronstein PA, Schneider AR, Collmer A. 2004. HopPtoN is a Pseudomonas syringae Hrp
- 693 (type III secretion system) cysteine protease effector that suppresses pathogen-induced necrosis
- associated with both compatible and incompatible plant interactions. Molecular Microbiology **54**, 353-365.
- 696 Lu D, Wu S, Gao X, Zhang Y, Shan L, He P. 2010. A receptor-like cytoplasmic kinase, BIK1, associates with
- a flagellin receptor complex to initiate plant innate immunity. Proceedings of the National Academy of
- Sciences of the United States of America **107**, 496-501.
- 699 **Ma KW, Ma W**. 2016. YopJ Family Effectors Promote Bacterial Infection through a Unique
- Acetyltransferase Activity. Microbiology and Molecular Biology Reviews **80**, 1011-1027.
- Ma W, Dong FF, Stavrinides J, Guttman DS. 2006. Type III effector diversification via both pathoadaptation and horizontal transfer in response to a coevolutionary arms race. PLoS Genetics **2**, e209.
- 703 Mackey D, Holt BF, 3rd, Wiig A, Dangl JL. 2002. RIN4 interacts with Pseudomonas syringae type III effector
- molecules and is required for RPM1-mediated resistance in Arabidopsis. Cell **108**, 743-754.
- 705 Markowitz VM, Chen IM, Palaniappan K, Chu K, Szeto E, Grechkin Y, Ratner A, Jacob B, Huang J, Williams
- 706 P, Huntemann M, Anderson I, Mavromatis K, Ivanova NN, Kyrpides NC. 2012. IMG: the Integrated
- 707 Microbial Genomes database and comparative analysis system. Nucleic Acids Research **40**, D115-122.
- 708 Marshall NC, Finlay BB, Overall CM. 2017. Sharpening Host Defenses during Infection: Proteases Cut to
- the Chase. Molecular and Cellular Proteomics **16**, S161-171.
- 710 Martel A, Laflamme B, Seto D, Bastedo DP, Dillon MM, Almeida RND, Guttman DS, Desveaux D. 2020.
- 711 Immunodiversity of the Arabidopsis ZAR1 NLR Is Conveyed by Receptor-Like Cytoplasmic Kinase Sensors.
- 712 Frontiers in Plant Science **11**, 1290.
- 713 Mazo-Molina C, Mainiero S, Haefner BJ, Bednarek R, Zhang J, Feder A, Shi K, Strickler SR, Martin GB.
- 714 2020. Ptr1 evolved convergently with RPS2 and Mr5 to mediate recognition of AvrRpt2 in diverse
- 715 solanaceous species. Plant Journal 103, 1433-1445.
- 716 Mazo-Molina C, Mainiero S, Hind SR, Kraus CM, Vachev M, Maviane-Macia F, Lindeberg M, Saha S,
- 717 Strickler SR, Feder A, Giovannoni JJ, Smart CD, Peeters N, Martin GB. 2019. The Ptr1 Locus of Solanum
- 718 lycopersicoides Confers Resistance to Race 1 Strains of Pseudomonas syringae pv. tomato and to Ralstonia
- 719 pseudosolanacearum by Recognizing the Type III Effectors AvrRpt2 and RipBN. Molecular Plant Microbe
- 720 Interactions **32**, 949-960.
- 721 Meinzer U, Barreau F, Esmiol-Welterlin S, Jung C, Villard C, Leger T, Ben-Mkaddem S, Berrebi D,
- Dussaillant M, Alnabhani Z, Roy M, Bonacorsi S, Wolf-Watz H, Perroy J, Ollendorff V, Hugot JP. 2012.
- 723 Yersinia pseudotuberculosis effector YopJ subverts the Nod2/RICK/TAK1 pathway and activates caspase-
- 1 to induce intestinal barrier dysfunction. Cell Host Microbe **11**, 337-351.
- Mergner J, Frejno M, List M, Papacek M, Chen X, Chaudhary A, Samaras P, Richter S, Shikata H, Messerer
- 726 M, Lang D, Altmann S, Cyprys P, Zolg DP, Mathieson T, Bantscheff M, Hazarika RR, Schmidt T, Dawid C,
- 727 Dunkel A, Hofmann T, Sprunck S, Falter-Braun P, Johannes F, Mayer KFX, Jürgens G, Wilhelm M,
- 728 Baumbach J, Grill E, Schneitz K, Schwechheimer C, Kuster B. 2020. Mass-spectrometry-based draft of the
- 729 Arabidopsis proteome. Nature **579**, 409-414.
- 730 Mindrinos M, Katagiri F, Yu GL, Ausubel FM. 1994. The A. thaliana disease resistance gene RPS2 encodes
- 731 a protein containing a nucleotide-binding site and leucine-rich repeats. Cell **78**, 1089-1099.
- 732 Mukherjee S, Keitany G, Li Y, Wang Y, Ball HL, Goldsmith EJ, Orth K. 2006. Yersinia YopJ acetylates and
- 733 inhibits kinase activation by blocking phosphorylation. Science **312**, 1211-1214.

- 734 Nakano M, Mukaihara T. 2019. Comprehensive Identification of PTI Suppressors in Type III Effector
- 735 Repertoire Reveals that Ralstonia solanacearum Activates Jasmonate Signaling at Two Different Steps.
- 736 International Journal of Molecular Science 20: 5992.
- 737 Niedermaier S, Huesgen PF. 2019. Positional proteomics for identification of secreted proteoforms
- 738 released by site-specific processing of membrane proteins. Biochimica et Biophysica Acta (BBA) Proteins
- 739 and Proteomics **1867**, 140138.
- Nimchuk Z, Marois E, Kjemtrup S, Leister RT, Katagiri F, Dangl JL. 2000. Eukaryotic fatty acylation drives
- 741 plasma membrane targeting and enhances function of several type III effector proteins from
- 742 Pseudomonas syringae. Cell **101**, 353-363.
- 743 Nimchuk ZL, Fisher EJ, Desveaux D, Chang JH, Dangl JL. 2007. The HopX (AvrPphE) family of Pseudomonas
- 744 syringae type III effectors require a catalytic triad and a novel N-terminal domain for function. Molecular
- 745 Plant Microbe Interactions **20**, 346-357.
- 746 Nissinen RM, Ytterberg AJ, Bogdanove AJ, KJ VANW, Beer SV. 2007. Analyses of the secretomes of
- 747 Erwinia amylovora and selected hrp mutants reveal novel type III secreted proteins and an effect of HrpJ
- on extracellular harpin levels. Molecular Plant Pathology **8**, 55-67.
- 749 Orth K, Xu Z, Mudgett MB, Bao ZQ, Palmer LE, Bliska JB, Mangel WF, Staskawicz B, Dixon JE. 2000.
- 750 Disruption of signaling by Yersinia effector YopJ, a ubiquitin-like protein protease. Science **290**, 1594-1597.
- 751 Paquette N, Conlon J, Sweet C, Rus F, Wilson L, Pereira A, Rosadini CV, Goutagny N, Weber ANR, Lane
- 752 WS, Shaffer SA, Maniatis S, Fitzgerald KA, Stuart L, Silverman N. 2012. Serine/threonine acetylation of
- 753 TGF -activated kinase (TAK1) by Yersinia pestis YopJ inhibits innate immune signaling. Proceedings of the
- 754 National Academy of Sciences **109**, 12710-12715.
- Pauwels L, Barbero GF, Geerinck J, Tilleman S, Grunewald W, Pérez AC, Chico JM, Bossche RV, Sewell J,
- 756 Gil E, García-Casado G, Witters E, Inzé D, Long JA, De Jaeger G, Solano R, Goossens A. 2010. NINJA
- 757 connects the co-repressor TOPLESS to jasmonate signalling. Nature **464**, 788-791.
- 758 **Pauwels L, Goossens A**. 2011. The JAZ proteins: a crucial interface in the jasmonate signaling cascade.
- 759 Plant Cell **23**, 3089-3100.
- 760 Pearson JS, Riedmaier P, Marchès O, Frankel G, Hartland EL. 2011. A type III effector protease NIeC from
- 761 enteropathogenic Escherichia coli targets NF-κB for degradation. Molecular Microbiology **80**, 219-230.
- 762 Perrar A, Dissmeyer N, Huesgen PF. 2019. New beginnings and new ends Methods for large-scale
- characterization of protein termini and their use in plant biology. Journal of Experimental Botany **70**, 2021-
- 764 2038.
- Pitsili E, Phukan UJ, Coll NS. 2020. Cell Death in Plant Immunity. Cold Spring Harb Perspect Biol 12, 1-.
- 766 **Pottinger SE, Innes RW**. 2020. RPS5-Mediated Disease Resistance: Fundamental Insights and Translational
- 767 Applications. Annual Review of Phytopathology **58**, 139-160.
- 768 Prokchorchik M, Choi S, Chung EH, Won K, Dangl JL, Sohn KH. 2020. A host target of a bacterial cysteine
- 769 protease virulence effector plays a key role in convergent evolution of plant innate immune system
- 770 receptors. New Phytologist **225**, 1327-1342.
- 771 Pruneda JN, Durkin CH, Geurink PP, Ovaa H, Santhanam B, Holden DW, Komander D. 2016. The
- 772 Molecular Basis for Ubiquitin and Ubiquitin-like Specificities in Bacterial Effector Proteases. Molecular Cell
- 773 **63**, 261-276.
- Puri N, Jenner C, Bennett M, Stewart R, Mansfield J, Lyons N, Taylor J. 1997. Expression of avrPphB, an
- 775 avirulence gene from Pseudomonas syringae pv. phaseolicola, and the delivery of signals causing the
- hypersensitive reaction in bean. Molecular Plant Microbe Interactions **10**, 247-256.
- 777 Qi D, Dubiella U, Kim SH, Sloss DI, Dowen RH, Dixon JE, Innes RW. 2014. Recognition of the protein kinase
- 778 AVRPPHB SUSCEPTIBLE1 by the disease resistance protein RESISTANCE TO PSEUDOMONAS SYRINGAE5 is
- dependent on s-acylation and an exposed loop in AVRPPHB SUSCEPTIBLE1. Plant Physiology **164**, 340-351.
- 780 Ravalin M, Basu K, Gestwicki JE, Craik CS. 2019. End-Binding E3 Ubiquitin Ligases Enable Protease
- 781 Signaling. ACS Chem Biol.

- 782 Rawlings ND, Barrett AJ, Bateman A. 2014. Using the MEROPS Database for Proteolytic Enzymes and
- 783 Their Inhibitors and Substrates. Curr Protoc Bioinformatics 48, 1.25.21-33.
- 784 Rawlings ND, Barrett AJ, Thomas PD, Huang X, Bateman A, Finn RD. 2018. The MEROPS database of
- proteolytic enzymes, their substrates and inhibitors in 2017 and a comparison with peptidases in the
- 786 PANTHER database. Nucleic Acids Research 46, D624-D632.
- 787 Ray SK, Macoy DM, Kim WY, Lee SY, Kim MG. 2019. Role of RIN4 in Regulating PAMP-Triggered Immunity
- and Effector-Triggered Immunity: Current Status and Future Perspectives. Molecules and Cells 42, 503-
- 789 511.
- 790 Rodríguez-Herva JJ, González-Melendi P, Cuartas-Lanza R, Antúnez-Lamas M, Río-Alvarez I, Li Z, López-
- 791 Torrejón G, Díaz I, Del Pozo JC, Chakravarthy S, Collmer A, Rodríguez-Palenzuela P, López-Solanilla E.
- 792 2012. A bacterial cysteine protease effector protein interferes with photosynthesis to suppress plant
- 793 innate immune responses. Cellular Microbiology **14**, 669-681.
- 794 Russell AR, Ashfield T, Innes RW. 2015. Pseudomonas syringae Effector AvrPphB Suppresses AvrB-
- 795 Induced Activation of RPM1 but Not AvrRpm1-Induced Activation. Molecular Plant Microbe Interactions
- 796 **28**, 727-735.
- 797 Salguero-Linares J, Coll NS. 2019. Plant proteases in the control of the hypersensitive response. Journal
- 798 of Experimental Botany **70**, 2087-2095.
- 799 Shames SR, Bhavsar AP, Croxen MA, Law RJ, Mak SH, Deng W, Li Y, Bidshari R, de Hoog CL, Foster LJ,
- 800 Finlay BB. 2011. The pathogenic Escherichia coli type III secreted protease NIeC degrades the host
- acetyltransferase p300. Cellular Microbiology **13**, 1542-1557.
- 802 Shao F, Golstein C, Ade J, Stoutemyer M, Dixon JE, Innes RW. 2003. Cleavage of Arabidopsis PBS1 by a
- bacterial type III effector. Science **301**, 1230-1233.
- Shao F, Merritt PM, Bao Z, Innes RW, Dixon JE. 2002. A Yersinia Effector and a Pseudomonas Avirulence
- Protein Define a Family of Cysteine Proteases Functioning in Bacterial Pathogenesis. Cell **109**, 575-588.
- Shema G, Nguyen MTN, Solari FA, Loroch S, Venne AS, Kollipara L, Sickmann A, Verhelst SH, Zahedi RP.
- 807 2018. Simple, scalable, and ultrasensitive tip-based identification of protease substrates. Molecular and
- 808 Cellular Proteomics **17**, 826-834.
- Shenoy AR, Furniss RCD, Goddard PJ, Clements A. 2018. Modulation of Host Cell Processes by T3SS
- 810 Effectors. Current Topics in Microbiology and Immunology **416**, 73-115.
- 811 Shi J, Zhao Y, Wang K, Shi X, Wang Y, Huang H, Zhuang Y, Cai T, Wang F, Shao F. 2015. Cleavage of GSDMD
- by inflammatory caspases determines pyroptotic cell death. Nature **526**, 660-665.
- 813 Shi J, Zhao Y, Wang Y, Gao W, Ding J, Li P, Hu L, Shao F. 2014. Inflammatory caspases are innate immune
- receptors for intracellular LPS. Nature **514**, 187-192.
- Simonich MT, Innes RW. 1995. A disease resistance gene in Arabidopsis with specificity for the avrPph3
- gene of Pseudomonas syringae pv. phaseolicola. Molecular Plant Microbe Interactions 8, 637-640.
- 817 Stevens C, Bennett MA, Athanassopoulos E, Tsiamis G, Taylor JD, Mansfield JW. 1998. Sequence
- variations in alleles of the avirulence gene avrPphE.R2 from Pseudomonas syringae pv. phaseolicola lead
- to loss of recognition of the AvrPphE protein within bean cells and a gain in cultivar-specific virulence.
- 820 Molecular Microbiology **29**, 165-177.
- 821 Studholme DJ, Ibanez SG, MacLean D, Dangl JL, Chang JH, Rathjen JP. 2009. A draft genome sequence
- and functional screen reveals the repertoire of type III secreted proteins of Pseudomonas syringae
- pathovar tabaci 11528. BMC Genomics 10, 395.
- Sun J, Huang G, Fan F, Wang S, Zhang Y, Han Y, Zou Y, Lu D. 2017. Comparative study of Arabidopsis PBS1
- and a wheat PBS1 homolog helps understand the mechanism of PBS1 functioning in innate immunity.
- 826 Scientific Reports 7, 5487.
- 827 Sweet CR, Conlon J, Golenbock DT, Goguen J, Silverman N. 2007. YopJ targets TRAF proteins to inhibit
- TLR-mediated NF-kappaB, MAPK and IRF3 signal transduction. Cellular Microbiology 9, 2700-2715.

- Tian W, Hou C, Ren Z, Wang C, Zhao F, Dahlbeck D, Hu S, Zhang L, Niu Q, Li L, Staskawicz BJ, Luan S. 2019.
- A calmodulin-gated calcium channel links pathogen patterns to plant immunity. Nature **572**, 131-135.
- 831 Toruno TY, Stergiopoulos I, Coaker G. 2016. Plant-Pathogen Effectors: Cellular Probes Interfering with
- Plant Defenses in Spatial and Temporal Manners. Annual Review of Phytopathology **54**, 419-441.
- 833 Ustun S, Bornke F. 2015. The Xanthomonas campestris type III effector XopJ proteolytically degrades
- proteasome subunit RPT6. Plant Physiology **168**, 107-119.
- Vogt I, Wohner T, Richter K, Flachowsky H, Sundin GW, Wensing A, Savory EA, Geider K, Day B, Hanke
- 836 MV, Peil A. 2013. Gene-for-gene relationship in the host-pathogen system Malus x robusta 5-Erwinia
- 837 amylovora. New Phytologist **197**, 1262-1275.
- Wattam AR, Abraham D, Dalay O, Disz TL, Driscoll T, Gabbard JL, Gillespie JJ, Gough R, Hix D, Kenyon R,
- 839 Machi D, Mao C, Nordberg EK, Olson R, Overbeek R, Pusch GD, Shukla M, Schulman J, Stevens RL,
- 840 Sullivan DE, Vonstein V, Warren A, Will R, Wilson MJ, Yoo HS, Zhang C, Zhang Y, Sobral BW. 2014.
- PATRIC, the bacterial bioinformatics database and analysis resource. Nucleic Acids Research 42, D581-
- 842 591
- Wei HL, Zhang W, Collmer A. 2018. Modular Study of the Type III Effector Repertoire in Pseudomonas
- 844 syringae pv. tomato DC3000 Reveals a Matrix of Effector Interplay in Pathogenesis. Cell Reports 23, 1630-
- 845 1638.
- Weng SSH, Demir F, Ergin EK, Dirnberger S, Uzozie A, Tuscher D, Nierves L, Tsui J, Huesgen PF, Lange PF.
- 2019. Sensitive Determination of Proteolytic Proteoforms in Limited Microscale Proteome Samples.
- Molecular and Cellular Proteomics **18**, 2335-2347.
- Wu Y, Gao Y, Zhan Y, Kui H, Liu H, Yan L, Kemmerling B, Zhou JM, He K, Li J. 2020. Loss of the common
- 850 immune coreceptor BAK1 leads to NLR-dependent cell death. Proceedings of the National Academy of
- Sciences of the United States of America 117, 27044-27053.
- Xiang QW, Bai J, Cai J, Huang QY, Wang Y, Liang Y, Zhong Z, Wagner C, Xie ZP, Staehelin C. 2020. NopD
- of Bradyrhizobium sp. XS1150 Possesses SUMO Protease Activity. Frontiers in Microbiology 11, 386.
- 854 Xin XF, Kvitko B, He SY. 2018. Pseudomonas syringae: what it takes to be a pathogen. Nature Reviews:
- 855 Microbiology **16**, 316-328.
- 856 Yamaguchi Y, Huffaker A. 2011. Endogenous peptide elicitors in higher plants. Current Opinion in Plant
- 857 Biology **14**, 351-357.
- Yen H, Ooka T, Iguchi A, Hayashi T, Sugimoto N, Tobe T. 2010. NIeC, a type III secretion protease,
- 859 compromises NF-κB activation by targeting p65/RelA. PLoS Pathogens 6, e1001231.
- Zhang J, Li W, Xiang T, Liu Z, Laluk K, Ding X, Zou Y, Gao M, Zhang X, Chen S, Mengiste T, Zhang Y, Zhou
- 861 JM. 2010. Receptor-like cytoplasmic kinases integrate signaling from multiple plant immune receptors and
- are targeted by a Pseudomonas syringae effector. Cell Host Microbe 7, 290-301.
- **Zhao Y, He SY, Sundin GW**. 2006. The Erwinia amylovora avrRpt2EA gene contributes to virulence on pear
- and AvrRpt2EA is recognized by Arabidopsis RPS2 when expressed in pseudomonas syringae. Molecular
- Plant Microbe Interactions 19, 644-654.
- 2 Zheng XY, Spivey NW, Zeng W, Liu PP, Fu ZQ, Klessig DF, He SY, Dong X. 2012. Coronatine promotes
- Pseudomonas syringae virulence in plants by activating a signaling cascade that inhibits salicylic acid
- accumulation. Cell Host Microbe **11**, 587-596.
- **Zhou H, Lin J, Johnson A, Morgan RL, Zhong W, Ma W**. 2011. Pseudomonas syringae type III effector
- HopZ1 targets a host enzyme to suppress isoflavone biosynthesis and promote infection in soybean. Cell
- 871 Host Microbe **9**, 177-186.
- 872 Zhou H, Monack DM, Kayagaki N, Wertz I, Yin J, Wolf B, Dixit VM. 2005. Yersinia virulence factor YopJ
- acts as a deubiquitinase to inhibit NF-kappa B activation. Journal of Experimental Medicine 202, 1327-
- 874 1332.

Zhu M, Shao F, Innes RW, Dixon JE, Xu Z. 2004. The crystal structure of Pseudomonas avirulence protein AvrPphB: a papain-like fold with a distinct substrate-binding site. Proceedings of the National Academy of Sciences of the United States of America 101, 302-307.
Zurbriggen MD, Carrillo N, Hajirezaei MR. 2010. ROS signaling in the hypersensitive response: when, where and what for? Plant Signaling Behavior 5, 393-396.

Table 1. Overview of the bacterial T3SE proteases discussed in this review. Selected bacterial effector proteases secreted by type III secretion systems. Green: phytopathogens; red: mammalian pathogens. Type: CP, cysteine protease; TP, threonine protease; MP, metalloprotease. Clan and family membership according to MEROPS nomenclature. Families combine homologous proteases with significant sequence similarity, while clans combine families arising from a common ancestor based on a similar protein structure and/or order of catalytic amino acids in the primary sequence (Rawlings *et al.*, 2014).

Pathogen	Effector	Туре	Clan	Family	Substrate/Target	Function	Source
Pseudomonas Syringae	AvrPphB	СР	CA	C58B	PBS1, RIPK, PBS1-like kinases (PBL), BIK1	supresses PTI	(Ade <i>et al.</i> , 2007; Zhang <i>et al.</i> , 2010)
	AvrRpt2	СР	CA	C70	RIN4, NOIs	block RPM1 activation	(Eschen-Lippold <i>et al.</i> , 2016; Kim <i>et al.</i> , 2005a)
					?	prevents MKK4 activation, modifies auxin signaling	(Cui <i>et al.</i> , 2013; Eschen-Lippold <i>et al.</i> , 2016)
	HopB1	TP		Т8	activated BAK1	supresses PTI	(Li et al., 2016)
	HopC1	n.a.	n.a.	n.a.			
	HopZ1a	СР	CE	C55			
	HopZ2	СР	CE	C55			
	HopZ3	СР	CE	C55			
	HopZ1	СР	CE	C55			
	HopX1 (AvrPphE)	СР	CA	C103	JAZ repressors		(Gimenez-Ibanez <i>et al.</i> , 2014)
	HopN1	СР	CA	C58B	PsbQ	supresses HR, ROS- and callose production	(Rodríguez-Herva et al., 2012)
Rhizobium sp.	NopT	CP	CA	C58		regulating symbiosis	(Dai <i>et al.</i> , 2008)
Ralstonia solanacearum	RipE1	СР	CA	103	JAZ repressors		(Nakano and Mukaihara, 2019)
Erwinia amylovora	Eop1	CP	CE	C55			(Nissinen et al., 2007)
	AvrRpt2EA	CP	CA	C70	RIN4		(Vogt et al., 2013)
Shigella flexneri	OspD3	CP	na	C118	RIPK1, RIPK3	blocks necroptosis	(Ashida et al., 2020)
enteropathogenic Escherichia coli (EPEC)	EspL	СР	na	C118	RIPK1, RIPK3, TRIF and ZBP1/DAI	blocks necroptosis	(Pearson <i>et al.</i> , 2011)
	NIeC	MP	MA	M85	NF-κB, p65	blocks inflammation	(Baruch <i>et al.</i> , 2011)
	NIeD	MP	MA	M91	JNK, p38	blocks apoptosis/inflammation	(Baruch <i>et al.</i> , 2011)
Yersinia pestis	YopT	СР	CA	C58A	Rho GTPases	disruption of actin cytoskeleton	(Shao <i>et al.</i> , 2002)

Box 1: Degradomics for unbiased effector protease substrate discovery

Shotgun proteomics, where proteomes are digested into peptides for mass spectrometric analysis, enables large-scale quantitative proteome comparisons even at near-complete coverage (Mergner *et al.*, 2020). By determining changes in protein abundance, such approaches allow identification of candidate substrates, particularly for degradative proteases (Demir *et al.*, 2018). In contrast, site-specific proteolytic cleavages are defined by the new protease-generated neo-N and neo-C termini, but their identification in the complex background of a proteome digest is challenging and therefore requires selective enrichment (Niedermaier and Huesgen, 2019). This can be achieved by (i) selective tagging of protein termini before digest, followed by enrichment (termed "positive selection"); (ii) by complete modification of protein termini with a labeling reagent, followed by proteome digest and depletion of the peptides generated by the digest (termed "negative selection"); or (iii) based on the peptide charge (Bogaert and Gevaert, 2020; Perrar *et al.*, 2019). Due to the compatibility with amine-reactive isotope labeling reagents, comparative ease of use and superior sensitivity, enrichment of N termini by negative selection is currently most frequently applied.

All methods allow for identification of candidate substrates by comparison of proteomes with differential exposure to the protease of interest, ideally using a catalytically inactive version carrying a point mutation in the (presumed) active site as a control. In vitro incubation of the candidate substrate protein, or of a cell extract with recombinant protease constructs, provides the most direct proof of protease/substrate relationships. However, this "reverse" degradomics approach (Julien and Wells, 2017) is prone to "false positive" cleavage events, for example in proteins destabilized by the incubation conditions or in proteins with distinct subcellular localization(s) in vivo. Alternatively, substrates can be identified in a "forward" approach based on differential activity in vivo, for example by constitutive or inducible expression of effector proteases in planta. This overcomes the issues of "non-native" substrate cleavage (although strong expression may still result in improper subcellular localization) and provides for host factors and post-translational modifications that may be required for protease activation. More complex scenarios such as delivery by an otherwise effector-depleted pathogen strain or comparison in wild type infection experiments are needed if effector substrate recognition depends on modifications induced by pathogen perception or the presence of other effectors. While cleavages observed in these systems are more likely to be relevant, they can also be masked by subsequent processing or degradation, or arise from a plethora of indirect effects. Therefore, a combination of these approaches including targeted genetic or

- 922 biochemical validation is needed to establish direct, physiologically relevant protease-substrate
- 923 relationships (Demir et al., 2018).

Figure legends

Figure 1. T3SE proteases interfere with plant innate immune signaling. (a) PTI signaling pathway. The FLS2-BAK1 co-receptor complex initiates PTI signaling upon perception of flg22. Phosphorylated BIK1 dissociates from the receptor complex and promotes ROS production and Ca²⁺ influx by phosphorylating RBOHD and the CNGC2/4 calcium channel (Tian *et al.*, 2019). MAPK cascades transduce PTI signals intracellularly, resulting in the upregulation of defence genes including SA-response genes. RIN4 generally functions as an inhibitor of PTI. (b) T3SE protease suppression of PTI. HopB1 cleaves phosphorylated BAK1 inhibiting downstream signaling and BIK1 phosphorylation. BIK1 is itself cleaved by AvrPphB, thus reducing RBOHD phosphorylation and ROS production. In the nucleus, HopX1 cleaves JAZ transcriptional repressors, activating JA-responsive genes and as a consequence of JA signaling activation, suppressing SA genes. Additionally, AvrRpt2 cleavage of RIN4 yields three fragments, two of which hyperactively suppress PTI. Pink pac-man: T3SE proteases; blue: host proteins, with light blue color and dashed lines indicating T3SE protease targets; dashed lines indicate processes that are disrupted as a consequence of T3SE protease activity.

Figure 2. Detection of effector protease activity by cytosolic plant immune receptors. Plant NLRs induce ETI in response to *P. syringae* T3SE proteases. (a) RIN4 interacts with and inhibits RPS2. Cleavage of RIN4 by AvrRpt2 relieves RPS2 from repression, triggering the activation of ETI. (b) PBS1 interacts with RPS5. AvrPphB cleavage of PBS1 induces a conformational change in RPS5, triggering the onset of ETI. (c) HopB1 interacts with the FLS2 receptor to access phosphorylated (active) BAK1 for cleavage. ETI activated in response to HopB1 requires the 'helper' NLR ADR1 and likely involves other unknown receptors *e.g.* 'sensor' NLRs. (d) HopX1 appears to promote an interaction between RLCKs ZED1 and SZE1, leading to the activation of ZAR1-mediated ETI. To date, no link has been established between ZAR1 activation and the protease activity of HopX1. Pink pac-man: T3SE proteases; blue: host proteins, with light blue color and dashed lines indicating T3SE protease targets; yellow: NLRs involved in the detection of T3SE proteases and onset of ETI; question marks indicate unknown mechanisms and components; dashed lines indicate processes that are disrupted as a consequence of T3SE protease activity.

Figure 3. Bacterial effector proteases interfere with plant and mammalian cell death and proinflammatory signaling. (a) *P. syringae* T3SE proteases suppress HR (regulated cell death associated with ETI) in plant cells. AvrPphB cleaves the host kinase RIPK, impeding AvrB-induced phosphorylation of RIN4 to prevent RPM1-mediated HR. In the chloroplast, HopN1 suppresses chloroplast ROS production by cleaving PsbQ. Chloroplast-generated ROS plays an important role in establishing HR (Liu *et al.*, 2007; Rodríguez-Herva *et al.*, 2012; Zurbriggen *et al.*, 2010). **(b)** Perturbation of the extracellular microenvironment are sensed by membrane-bound receptors such as TNF receptor 1 (TNFR1), activating intracellular signaling. Bacterial proteases injected by the T3SS cleave key components of both proinflammatory signaling as well as cell death pathways. For details, see main text. Pink pac-man: T3SE proteases; pink circle: T3SE; blue: host proteins, with light blue color and dashed lines indicating T3SE protease targets; yellow rectangle: NLR involved in the detection of T3SE proteases and onset of ETI; dashed lines indicate processes that are disrupted as a consequence of T3SE protease activity.