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Abstract
Proteases play a central role in regulating renal pathophysiology and are increasingly evaluated as actionable drug 
targets. Here, we review the role of proteolytic systems in inflammatory kidney disease. Inflammatory kidney diseases are 
associated with broad dysregulations of extracellular and intracellular proteolysis. As an example of a proteolytic system, 
the complement system plays a significant role in glomerular inflammatory kidney disease and is currently under clinical 
investigation. Based on two glomerular kidney diseases, lupus nephritis, and membranous nephropathy, we portrait two 
proteolytic pathomechanisms and the role of the complement system. We discuss how profiling proteolytic activity in patient 
samples could be used to stratify patients for more targeted interventions in inflammatory kidney diseases. We also describe 
novel comprehensive, quantitative tools to investigate the entirety of proteolytic processes in a tissue sample. Emphasis 
is placed on mass spectrometric approaches that enable the comprehensive analysis of the complement system, as well as 
protease activities and regulation in general.
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Role of proteases in inflammation

Enzymatic proteolysis controls myriad physiological 
and pathophysiological processes, such as differentiation 
(Canalis et  al. 2003), development (Kopan and Ilagan 
2009), apoptosis (Taylor et al. 2008), hormone activation 
(Hampton 2002), neurodegeneration (O’Brien and Wong 
2011), and cancer (Kessenbrock et  al. 2010). Protease 

activity is essential for propagation and resolution of 
coagulation and inflammation. In inflammation, rapid 
protease activity is a key component of the innate immune 
system and contributor to the microenvironment and 
responsible for tissue remodeling. Several proteases are 
active within the inflammatory microenvironment, such 
as cathepsins (Joyce and Pollard 2009), urokinase PAR 
receptors (Andreasen et al. 1997; Joyce and Pollard 2009), 
matrix metalloproteinases (MMPs) (Prudova and Overall 
2010; auf dem Keller et al. 2013; Eckhard et al. 2016), 
lysozyme (Satoskar et al. 2020), and the complement system 
(Ricklin et al. 2010). Recently, it has been shown that many 
of the proteases also target not only their direct substrates 
but also display unexpected substrates, modifying additional 
protein factors, which in turn interact with one another in a 
proteolysis-dependent manner. This hypothesis of a tightly 
regulated and fate-determining “protease web” (Fortelny 
et al. 2014; Rinschen et al. 2018b) postulates that proteases 
form functional networks with many interactions to govern 
pathophysiological processes. This notion expands the 
traditional and widely accepted concept of unidirectional 
proteolytic cascades, such as the initiation of apoptosis by 
caspase-8/-9-mediated proteolytic activation of caspase 
3 (Porter and Jänicke 1999). With 588 and 628 proteases 
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encoded in the human and mouse genome, respectively 
(Puente et  al. 2003), the discovery of the complex 
interactions between these different proteolytic enzymes 
and systems offers a plethora of novel therapeutic cues for 
targeted intervention. These might remediate earlier failures 
that considered only a fraction of the activities of selected 
proteases in a very specific context.

The glomerulus is a key part of the kidney that maintains 
its filtration function. A significant fraction (> 115,000 
prevalent patients in the US, 2017) of end-stage kidney 
disease is a result of glomerular diseases (USRDS 2019). 
Anatomically, the glomerulus consists of capillary loops 
and endothelia, mesangial cells, and podocytes (Dressler 
2006). The close interaction with various immune cells (e.g., 
 TH17 cells or  CD3+ T cells) control glomerular function 
and phenotype (Krebs et al. 2017; Turner et al. 2018; Park 
et  al. 2020). Molecular and signaling processes govern 
the progression of inflammatory glomerular disease. The 
presence of proteases is a hallmark of various forms of 
inflammatory, glomerular kidney diseases (Rinschen et al. 
2018b), including roles for the inflammasome (Shahzad et al. 
2015), the cathepsin family of proteases (Sever et al. 2007; 
Höhne et al. 2018; Merchant et al. 2020), lysozyme (Satoskar 

et al. 2020), MMPs (Zeisberg et al. 2006; Liu 2011), and the 
caspase system (Wang and Mitch 2014). In addition, the 
complement system, as part of the innate immune system, 
has emerged as an attractive target for glomerular diseases 
(Zipfel et al. 2019). This sets the stage for proteases as an 
increasingly appreciated but underexplored target for drug 
development in kidney disease, empowered by decades 
of successful protease inhibitor development targeting 
cardiovascular and infectious diseases (Drag and Salvesen 
2010; Verhelst 2017).

The aims of this article are to (1) describe our latest 
understanding of pathomechanisms of proteolytic systems 
in inflammatory glomerular kidney disease, particularly 
focusing on the role of the complement system in lupus 
nephritis and membranous nephropathy, and (2) highlight 
novel proteomics strategies using state-of-the-art mass 
spectrometry for the study of protease function in the context 
of glomerular function in inflammatory kidney disease.

The complement system, a key serum 
protease system

The complement system is a well-studied and relevant 
proteolytic system whose activation is widely accepted to be 
triggered during glomerular kidney disease. The complement 
system is an essential part of the innate immune system and 
is vital for maintaining tissue homeostasis (Ricklin et al. 
2010; Bajic et al. 2015). It can identify and opsonize targets, 
including invading microbes, immune complexes, necrotic 
tissue, and apoptotic cells, and hereafter facilitate their safe 
removal via phagocytosis (Merle et al. 2015b). The proteolytic 
cascades of the complement system are tightly regulated 
(Fig. 1) by several proteins (Merle et al. 2015a; Schmidt 
et al. 2016). If the delicate balance between activation and 
regulation is tipped, the system may act as a double-edged 
sword causing self-damage manifesting as various immune-
mediated and inflammatory diseases (Bajic et al. 2015).

Initiation of the complement system may occur through 
three pathways (Fig. 1), termed the classical pathway (CP), 
lectin pathway (LP), and alternative pathway (AP). While 
the CP and LP have specific initiating molecules (antibodies 
bound to antigens and patterns of carbohydrate structures, 
respectively), the AP is triggered by the spontaneous 
activation of complement factor C3 in the fluid phase. The 
pathways converge at the cleavage of complement factor C3 
into C3b and C3a, resulting in (1) opsonization of pathogens 
by split products of C3, (2) cell lysis via formation of 
the membrane attack complex, and (3) inflammation by 
recruitment of inflammatory cells such as neutrophils by 
pro-inflammatory mediators like C5a (Merle et al. 2015a).

While it is widely acknowledged that the complement 
system plays an integral role in disease progression and 

Fig. 1  Overview of the complement system, a proteolytic system acti-
vated in inflammatory kidney disease. Cleaved complement proteins 
are colored yellow. Red arrows indicate enzymatic activity. a Two 
pathways that are initiated by pattern recognition molecules may lead 
to activation of the complement system. The lectin pathway is initiated 
when either one of the two collectins, mannose-binding lectin (MBL) 
or collectin-LK (CL-LK), or one of the three ficolins (H-ficolin, 
L-ficolin, and M-ficolin) recognizes microbial carbohydrates or modi-
fied self surfaces. The enzymes MBL-associated serine protease-1 
and -2 (MASP-1 and MASP-2) that are attached to these recognition 
molecules get activated and now have the potential to cleave the C2 
and C4 proteins into the fragments C4a and C4b and C2a and C2b, 
respectively. Similarly, the recognition molecule C1q that will initiate 
the so-called classical pathway may recognize deposited immunoglob-
ulins bound to pathogens or apoptotic cells directly. When C1q binds, 
the two attached enzymes C1r and C1s may get activated and subse-
quently a cleavage of C2 and C4 may occur. b The central comple-
ment protein C3 may be activated through two enzymatic complexes: 
(1) spontaneous hydrolysis of the C3 thioester may form C3(H2O) that 
will bind factor B (B). This allows the enzyme factor D (D) to cleave 
B into the fragments Ba and Bb. This will allow Bb to cleave factor 
C3 into the fragment C3b. (2) similarly, if B binds to C3b it will be 
cleaved by D and lead to more generation of C3b—a positive feedback 
loop is formed. The fragments C4b and C2a generated via the lectin 
or classical pathway form complexes and this leads to C2a-mediated 
cleavage of C3 to C3b. The enzyme factor I (FI) will further process 
C3b to the fragments iC3b, C3c, and C3dg. The different fragments of 
C3 can bind to different receptors and initiate the activation of cells. c 
When more C3b molecules are deposited next to C4bC2a or next to 
C3bBb, a cleavage of C5 is initiated, leading to the fragments C5a and 
C5b. This will initiate the formation of a so-called membrane-attack 
complex consisting of C5b, C6, C7, C8, and C9 molecules. Such a 
complex may get inserted into membranes. The C5a molecule that was 
formed may bind to receptors and activate cells

◂
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can guide clinical diagnosis and classification, there is a 
lack of understanding of which complement proteins or 
functional protein fragments, also termed proteoforms (van 
der Burgt and Cobbaert 2018), are best suited as sensitive 
and specific diagnostic biomarkers when measured as part 
of routine clinical care in inflammatory kidney disease. The 
complexity of the complement system, which encompasses 
approximately 50 protein in circulation, demands a holistic 
and quantitative approach to identify the most important 
contributors and markers of inflammation (Ricklin et al. 
2010). For an overview of appropriate measurement 
strategies, we refer to other reviews (Ekdahl et al. 2018). 
The most commonly used assays are nephelometry and 
turbidimetry which utilize polyclonal antibodies against a 
specific analyte (e.g., C3 or C4). Notably, comprehensive 
approaches regarding the high-throughput profiling of 
clinical samples are currently missing.

Clinical trials with complement inhibitors such as 
CCX168 targeting C5aR (clinical trial code NCT02994927), 
OMS721 targeting MASP2 (NCT03608033), or C1INH 
targeting C1r and C1s (NCT02547220) are currently under 
investigation and may potentially be integrated as new 
treatments of selected diseases. Currently, 28 clinical trials, 
including six phase III trials, all with relevance to glomerular 
kidney disease, are ongoing and the C5 inhibitor Eculizumab 
is already available on the market (Zipfel et al. 2019).

The complement system in lupus nephritis

Complement proteins are found in many patients presenting 
lupus nephritis (LN) and this upregulation is a hallmark of 
the disease. The so-called “full-house” immunofluorescent 
staining pattern carried out as the gold-standard clinical 
testing in lupus nephritis biopsies with colocalization of 
IgG, IgM, IgA, C1q, and C3 (C4) is almost solely seen in 
lupus nephritis (Gianviti et al. 1999) in contrast to other 
glomerular kidney diseases (Fig. 2a-d, e). The traditional 
view of complement activation in the glomerulus of 
patients with LN is through activation of the classical 
pathway initiated via binding of C1q to immune-complex 
depositions in the glomeruli (Berden et al. 1999; Person 
et  al. 2020). When deposited in the mesangium and 
subendothelial space, the immune complexes are proximal 
to the glomerular basement membrane and in direct contact 
with the systemic circulation (Bomback et al. 2016).

Activation of the classical complement pathway 
generates C3a and C5a, which causes influx of neutrophils 
and mononuclear cells, which is the pattern seen in the 
proliferative LN subtypes (LN III and IV) (Weening et al. 
2004). The injury in class V LN (or membranous LN) is 
limited to the glomerular epithelial cells. Complement 
activation in membranous LN appears to be dominated 

Fig. 2  Complement staining in inflammatory glomerular disease. Immunostaining of complement components in human lupus nephritis (a-d) and 
postinfectious glomerular nephropathy (e)
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by activation of the Lectin pathway (Ma et  al. 2013). 
The alternative pathway amplifies the activation initiated 
through either of the classical or the lectin pathway 
(Fig. 1a). Key component of the AP is mannan-binding 
lectin-associated serine protease 3 (MASP-3), which is the 
only known activator of factor D and therefore essential in 
the AP pathway (Pihl et al. 2017), that was found at lower 
concentration in the plasma of patients with LN compared 
with lupus patients without nephritis (Troldborg et al. 2018). 
In LN kidney biopsies, properdin depositions in glomeruli 
were associated with increased proteinuria, and factor B 
depositions were associated with longer disease duration and 
interstitial fibrosis development (Sato et al. 2011). Blockade 
of the alternative and the lectin pathway through inhibition 
of MASP-1 and MASP-3 ameliorated LN in a mouse model 
(Machida et al. 2018).

The complement system in membranous 
nephropathy

Membranous nephropathy (MN) is an antibody-mediated 
proteinuric kidney disease. Glomerular complement 
deposition can be readily detected by immunofluorescence- 
and mass spectrometry-based approaches in patient biopsies 
(Person et al. 2019; Ravindran et al. 2020). The proposed 
pathophysiological mechanism of MN derives from 
investigations in a rat model of the disease, the so-called 
passive Heymann nephritis (PHN) (Heymann 1952). In this 
model, podocyte-directed heterologous antibodies from 
sheep (or other species) are transferred to rats, causing 
the formation of subepithelial immune deposits, which 
are considered the morphological hallmark sign of MN 
and proteinuria. The injected antibodies induce the local 
activation of the complement system with formation of 
the membrane attack complex C5b-9 (Kerjaschki 1992). 
In PHN, blocking the complement system by means of 
cobra venom factor was reported to completely prevent 
proteinuria development (Salant et  al. 1980). However, 
other experimental reports described the development 
of MN in the absence of complement deposition (Tomas 
et al. 2016, 2017) and after pharmacological complement 
depletion (Leenaerts et al. 1995), challenging the concept of 
the complement system as the sole mediator of cell injury 
and proteinuria in MN.

In patients with MN, autoantibodies against two podocyte 
antigens have been identified, the phospholipase A2 receptor 
1 (PLA2R1) and thrombospondin type-1 domain-containing 
7A (THSD7A) (Beck et al. 2009; Tomas et al. 2014). The 
classical pathway of the complement system is activated 
by binding of an antibody to an antigen. This mechanism 
can in principle apply for an antibody-mediated disease 
such as MN. However, anti-PLA2R1 and anti-THSD7A 

autoantibodies are dominantly of the IgG4 subclass, which 
is the IgG subclass with the least C1q binding capacity 
(Vidarsson et al. 2014), indicating that the alternative and 
lectin pathways may play a role in the pathogenesis of MN 
(Seikrit et al. 2018; Zhang et al. 2020). However, patients 
with PLA2R1- and THSD7A-associated MN usually have 
autoantibodies of C1q-binding non-IgG4 subclasses as 
well, principally enabling the activation of the complement 
system via the classical pathway (Huang et al. 2013; von 
Haxthausen et al. 2018). A study published while this paper 
was in review showed that IgG4 glycosylation in PLA2R1-
associated MN may be responsible for activation of the 
lectin pathway, and a subsequent activation of podocyte 
proteolytic pathways via cathepsin proteases (Haddad et al. 
2020).

Taken together, the presence of complement components 
at the site of tissue injury is undoubted in MN, but whether 
this contributes to MN pathogenesis or simply represents an 
epiphenomenon is still unclear today. Novel methodological 
approaches are needed to clarify the role of complement in 
MN.

Novel analytical approaches to map 
proteolysis in vivo

In order to prioritize and stratify patients for guiding 
treatment with complement inhibitors during the course 
of an immunosuppressive therapy, it would be beneficial 
to determine the activation state of proteolytic systems in 
patients with LN or MN to improve clinical care. To this 
end, several mass spectrometry-based approaches have been 
developed that are currently being transferred to preclinical 
disease models, awaiting further validation for application 
in clinical practice (Huesgen et al. 2014). In the following 
paragraph, we will review novel strategies for profiling and 
mapping proteolytic systems, including the complement 
system, using innovative analytical mass spectrometric 
technologies.

Proteomic profiling by nano-flow liquid chromatography 
tandem mass spectrometry (nLC-MS/MS) can be used to 
detect and quantify the entirety of proteases within the 
glomerulus to gain insight of the intricate protease-networks, 
making this an indispensable tool for understanding kidney 
disease and defining novel markers of kidney inflammation. 
Modern proteomics has matured to provide deep maps of 
protein compositions (Rinschen et al. 2018a) and is able 
to be paired with high-throughput automation (Müller 
et  al. 2020) and quality control systems important for 
clinical application (Dayon et  al. 2014). Alternatively, 
routine clinical assaying to quantify specific proteases as 
protein markers, upregulated in response to disease, can be 
performed with immunometric assays (Kapprell et al. 2011). 
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While the qualification and quantification of proteases are 
indispensable, full characterization of protease networks also  
requires functional assessment of protease activity. In order 
to correlate protease concentration to protease activity, the  
relationship between concentration and function can  
be established using activity-based protein profiling (ABPP), 
a method to identify the enzymatically active proteases in 
a sample (Cravatt et al. 2008). For ABPP, chemical probes 
are designed to target specific proteases, mainly cysteine 
and serine proteases but rarely metalloproteases due to their 
lack of stable acyl-enzyme intermediates (van Kasteren et al. 
2017). ABPP probes generally consist of three elements: (1) 
a reactive group which will specifically bind to the proteases 
of interest, mostly at the active site; (2) a reporter tag for 
purification (e.g., biotin); and (3) a linker to avoid steric 
hindrance by the reporter tag. Upon binding of the probes to 
the proteases in the sample, the reporter tag can be utilized to 
enrich the labeled proteases by affinity purification (e.g., by 
streptavidin beads for biotin-labeled probes). Subsequently, 
the purified proteases are trypsinized for identification by  
nLC-MS/MS (Chen et al. 2017). Additionally, ABPP can  
be utilized in combination with multiplexing assays on 
CyTOF instrumentation (Poreba et  al. 2020; Savickas 
and auf dem Keller 2017). For detailed investigations on 
protease maturation itself, e.g., zymogen removal, a targeted 
degradomics approach can be used (Savickas and auf dem 
Keller 2017), especially for complement activation.

In addition to monitoring the proteases themselves, 
several elegant approaches for the identification and 
quantification of the proteolytically processed proteins  
on a global scale have been developed, providing insight 
into novel protease targets and networks (Rinschen et al. 
2018c; Rinschen and Saez-Rodriguez 2020). These 
analytical strategies build on enrichment of endogenous 
protein N-termini, partially those N-termini that result  
from endogenous proteolytic activity (e.g., through 
complement system activity). This enrichment step prior 
to analysis by nLC-MS/MS is required because the excess 
of peptides generated during standard trypsinization 
in conventional proteomics workf lows would be 
indistinguishable from peptides generated by in  vivo 
proteolysis. These novel approaches thus alleviate some 
of the limitations of classical proteomics workflows to aid 
the discovery and quantification of endogenously formed 
N-terminal peptides (Niedermaier and Huesgen 2019).

Several approaches for the enrichment of endogenous 
N-termini have been developed: negative selection 
enrichment, such as terminal amine isotopic labeling of 
substrates (TAILS) (Kleifeld et al. 2010; Savickas et al. 
2020), combined fractional diagonal chromatography 
(COFRADIC) (Gevaert et al. 2003), or High-efficiency 
Undecanal-based N Termini EnRichment (HUNTER)  

(Weng et al. 2019) utilize chemical labeling to facilitate 
enrichment (Fig. 3a). Chemical labeling of endogenous 
N-termini prior to trypsinization, by reductive dimethylation 
(Boersema et  al. 2009; Demir et  al. 2017), acetylation 
(Gevaert et al. 2003), or alternatively TMT (Savickas and 
auf dem Keller 2017; Savickas et al. 2020), distinguishes 
native protein N-termini from N-termini generated through 
the trypsin digestion. The endogenous, free N-termini are 
chemically labeled prior to digestion with trypsin, and thus, 
all endogenous, original N-termini are either naturally 
modified (e.g., N-terminal acetylation) or chemically labeled 
(dimethylation or TMT). Subsequently, the proteolytic digest 
of proteins with trypsin generates small peptides, which all 
feature a free N-terminus and are present in high excess of 
the natural N-termini. These residues are then chemically 
tagged with a second compound that is different from the 
chemical labeling compound employed in the first step. This 
second tagging enabled depletion of the confounding and 
highly abundant tryptic peptides and yields the complete set 
of all N-termini in the sample, termed N-degradome.

Different labeling and tagging compounds are available 
for the enrichment of N-termini, each with their inherent 
properties (Fig.  3a): TAILS utilizes hyperbranched 
polyglycerol-aldehydes of high molecular weight (HPG-
ALD) for separation by filtration through a 30 kD MWCO 
units, COFRADIC uses 2,4,6-trinitrobenzenesulfonic acid 
(TNBS) for separation by chromatographic properties, and 
HUNTER applies the aldehyde undecanal for easy depletion 
by hydrophobic retention on  C18 material. All these tags used 
for the second tagging step are highly reactive towards the 
free N-terminus generated by tryptic digest. The chemically 
tagged peptides are depleted, and the remaining, endogenous 
N-termini used for subsequent LC/MS analysis. Quantitative 
alterations in the proteolytic network can thus be resolved 
via dimethyl (Demir et al. 2017) or TMT labeling strategies 
(Kleifeld et  al. 2011). Modified protocols of TAILS 
(Schilling et al. 2010) or COFRADIC (Canbay and auf dem 
Keller 2021) can be used for profiling of C-termini which is 
especially important for corroborating findings of N-termini 
proposed to result from endo-peptidase activity.

In contrast to these workflows, positive enrichment 
strategies enrich endogenously modified or chemically 
protected protein N-termini by affinity enrichment to retain 
desired N-termini containing peptides (Fig. 3b). A multi-
step labeling procedure targets at first lysine residues for 
guanidination at high pH and, secondly, protein N-termini for 
biotinylation at neutral pH. Subsequently, the trypsin digest 
is carried out yielding peptides with free, non-biotinylated 
N-termini. Separation of biotinylated endogenous N-termini 
that are from non-biotinylated tryptic peptides is carried out 
using streptavidin beads (Timmer et al. 2007). A slightly 
different positive selection approach employs the enzyme 
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subtiligase to ligate short peptides with a tag for enrichment, 
most frequently a click-chemistry functional moiety, to free 
N-termini present in the sample (Weeks and Wells 2020). In 
both cases, the eluted N-termini are subsequently identified 
by nLC-MS/MS.

An elegant method to measure proteolytic activity 
in a given sample and gaining substrate specificity 
information utilizes artificial peptide libraries (Fig. 3c) 
(Sun et al. 2007; Fields 2010). A FRET system consisting of 
7-methoxycoumarin-4-acetamide (MCA) and dinitrophenyl 
(DNP) is conjugated to an artificial pentapeptide library 

containing up to 2.47 million different protease substrate 
sequences. The fluorescent labels only fluoresce if the 
pentapeptide is proteolyzed (Enari et al. 1996). Following 
cleavage of the pentapeptide by a protease, the quencher 
DNP is removed, and MCA emits fluorescence, which 
can be quantified (Enari et  al. 1996; Kapprell et  al.  
2011). Addition of different protease inhibitors enables 
to pinpoint the protease activity to specific protease 
classes. As this method relies solely on the detection of 
a fluorescence signal rather than LC/MS, subsequent 
proteomics experiments are required to identify the proteases 

Fig. 3  Selected mass spectrometry-based methods for the  investiga-
tion of N-termini. a Negative enrichment approaches (e.g., TAILS, 
HUNTER, and CoFRADIC) chemically label  free N-termini but not 
endogenously modified N-termini. All N-termini subsequently gener-
ated through trypsin digestion feature a free N-terminus, whereas all 
natural N-termini are protected due to chemical labeling (e.g., dimeth-
ylation) or endogenous modifications (e.g., acetylation). The trypsin-
generated, free peptide N-termini are tagged with a selection tag (e.g., 
HPG-ALD, undecanal) and can be separated from the sample, effec-
tively enriching for endogenously modified or protected N-termini. 
Please note that the “selection tags” are different chemical moieties 
dependent on the specific protocol used. b Positive enrichment meth-
ods purify N-termini by affinity enrichment. Protein N-termini are 

labeled by guanidination/biotinylation in a two-step labeling reaction. 
Biotin-labeled N-termini are purified with streptavidin beads, and 
the bound N-terminal peptides are eluted off the beads. c An alterna-
tive strategy relies on use of synthetic peptide libraries as targets for 
endogenous proteases. The pentapeptides are coupled to a fluores-
cence resonance energy transfer (FRET) pair consisting of 7-meth-
oxycoumarin-4-acetamide (MCA) as a fluorophore and dinitrophenyl 
(DNP) as a quencher. Upon protease cleavage at any of the amide 
bonds, the quenching is alleviated, and MCA emits fluorescence at 
405 nm providing information on protease activity in a given sample. 
After detection of protease activity, subsequent steps are required to 
identify the proteases by LC/MS
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responsible for the cleavage. A very similar approach is the 
hybrid combinatorial substrate library (HyCoSuL) (Poreba 
et al. 2017). This method utilizes a combination of unnatural 
and natural amino acids in artificial, fluorogenic peptide 
substrates. A HyCoSul library has been successfully applied 
in determination of the extended substrate preferences for 
the SARS-CoV-2 main protease (Rut et al. 2020).

Global proteolytic analysis in glomerular 
disease

In the following paragraph, we will review the application 
of novel analytical techniques and the key insights gained 
from them.

One hallmark of glomerular inflammatory kidney disease 
is nephritis and proteinuria. When the renal filtration barrier 
becomes leaky, proteins leak into the urine (proteinuria). 
These proteins may also contain active proteases. From 
studies chiefly in nephrotic syndrome, it has been suggested 
that these proteases contribute to uncontrolled cleavages of 
ion transporters and channels, with functional consequences 
(Artunc et al. 2019). For instance, one target is the epithelial 
sodium channel (ENaC, SCNN1), a heterotrimeric sodium 
channel which is often targeted by aldosterone antagonists and 
channel inhibitors (e.g., amiloride). It has been suggested that 
ENaC cleavage leads to increased sodium retention and that the 
proteolytic cleavages are mainly carried out by serine proteases 
(Svenningsen et al. 2009). Serine proteases have been reported 
at elevated concentration in urine due to aberrant filtration and 
could detrimentally affect processes such as ENaC-dependent 
sodium reabsorption in the distal tubule. Additional proteases 
found to be active and at elevated concentration in the urine 
are plasmin (Svenningsen et al. 2009) and prostasin/kallikrein 
(Zachar et al. 2015). The Artunc group has catalogued the 
proteases active in urine from patients with acute nephrotic 
syndrome and a corresponding mouse model (Wörn et al. 
2021) by nLC-MS/MS and in a fluorescence-based assay 
(Kapprell et al. 2011) (Fig. 3c). Mainly serine proteases of the 
coagulation and complement cascade could be identified in 
the nephrotic syndrome urine. Their activity could be inhibited 
by using the serine protease-specific inhibitors AEBSF and 
aprotinin. By capturing those active serine-proteases with the 
help of AEBSF-coupled beads, the main active serine proteases 
could be identified as plasminogen, factor VII-activating 
protease, coagulation factor XIII, and the complement factors 
D and B. The identification of plasminogen as the main serine 
protease in the nephrotic syndrome urine is in line with similar 
reports of plasminogen/plasmin as biomarkers for glomerular 
injury (Egerman et al. 2020). In contrast, the urine protease 
composition in healthy controls was limited to low molecular 
weight and locally expressed proteases like kallikrein-1 or 
neprilysin (Wörn et al. 2021).

A preclinical model was used to analyze proteolytic 
processing in a model of cisplatin-induced acute kidney 
injury (Späth et al. 2018). The authors recorded proteome, 
transcriptome, and N-degradome from the same animals. 
N-degradomic analysis revealed coverage of 1865 N-termini 
from 1166 unique proteins. These included the N-termini of 
the entire complement system, covering the classical, lectin, 
and alternative pathways. Major sites of action included 
the complement components C3 and C4, each with four 
unique N-terminal processing sites and an arginine-specific 
cleavage motif in C4. Corresponding upstream components 
were also regulated, e.g., cathepsin L1/2 and complement 
factor D. These data indicate that comprehensive 
complement mapping in the tissue is possible and that 
this may be useful to accurately quantify the activation of 
protease systems using minimal amount of patient sample 
if combined with single-nephron proteomics techniques 
(Höhne et al. 2018). Comprehensive glomerular kidney 
disease degradomics datasets have been generated as well, 
suggesting proteolytic processing of ACTN4, podocin, and 
several other proteins responsible for podocyte maintenance, 
as well as complement proteolysis (Rinschen et al. 2017).

Conclusion

Proteases are key modulators of glomerular function, and 
the complement is an important proteolytic system that 
communicates between the epithelia and the innate immune 
system. While several inflammatory kidney diseases show that 
proteolysis is active and can be targeted genetically, it remains 
under investigation—both clinically and preclinically—if 
protease inhibition can emerge as therapeutic strategy in 
glomerular inflammatory kidney disease.

Within this context, novel aspects of complement system 
characterization can be useful. Traditionally regarded as a 
simple proteolytic cascade, the complement system exhibits 
increasingly recognized complex interactions with other 
proteolytic enzymes and inhibitors (auf dem Keller et al. 
2013), resulting in severe challenges for the development 
of reliable parameters for complement-based diagnosis and 
patient stratification in kidney disease. Part of the current 
limitations are analytical in nature, given the fact that more 
than 50 proteins, each with multiple proteoforms with distinct 
function and widely different abundance, make up the 
complement system. No consensus has been reached on what 
to measure, when to measure and how to measure complement 
activation (Ekdahl et al. 2018), and non-canonical effects 
of complement proteases have not yet been systematically 
analyzed in kidney disease. Further proteolytic systems, such 
as coagulation and fibrinolysis, on the other hand, are not 
commonly investigated despite possible interactions (Amara 
et al. 2010; Oikonomopoulou et al. 2012). Therefore, further 
improvement of mass spectrometry-based and chemical 
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biology techniques is needed to further and deeper profile 
proteases’ action in inflammatory kidney disease. Analysis 
of the proteolytic microenvironment in glomerular disease, 
including the complement system, may help stratify patients 
for therapeutic intervention, for instance, by complement 
inhibitors. Candidates for deep proteolytic analysis by 
proteomics include membranous nephropathy and lupus 
nephritis. Here, integrated proteomics profiling of human 
kidney biopsies and serum samples will lead to an increased 
understanding of pathobiology of protease-driven inflammation 
and might be used to stratify and prioritize patients for therapy 
with complement inhibition.
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