000892600 001__ 892600
000892600 005__ 20210623133422.0
000892600 0247_ $$2doi$$a10.1103/PhysRevMaterials.5.034001
000892600 0247_ $$2ISSN$$a2475-9953
000892600 0247_ $$2ISSN$$a2476-0455
000892600 0247_ $$2Handle$$a2128/27804
000892600 0247_ $$2altmetric$$aaltmetric:105779687
000892600 0247_ $$2WOS$$aWOS:000627661800001
000892600 037__ $$aFZJ-2021-02190
000892600 082__ $$a530
000892600 1001_ $$0P:(DE-HGF)0$$aYekta, Y.$$b0
000892600 245__ $$aStrength of effective Coulomb interaction in two-dimensional transition-metal halides M X 2 and M X 3 ( M = Ti , V, Cr, Mn, Fe, Co, Ni; X = Cl , Br, I)
000892600 260__ $$aCollege Park, MD$$bAPS$$c2021
000892600 3367_ $$2DRIVER$$aarticle
000892600 3367_ $$2DataCite$$aOutput Types/Journal article
000892600 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1621328566_31700
000892600 3367_ $$2BibTeX$$aARTICLE
000892600 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000892600 3367_ $$00$$2EndNote$$aJournal Article
000892600 520__ $$aWe calculate the strength of the effective on-site Coulomb interaction (Hubbard U) in two-dimensional transition-metal (TM) dihalides MX2 and trihalides MX3 (M=Ti, V, Cr, Mn, Fe, Co, Ni; X=Cl, Br, I) from first principles using the constrained random-phase approximation. The correlated subspaces are formed from t2g or eg bands at the Fermi energy. Elimination of the efficient screening taking place in these narrow bands gives rise to sizable interaction parameters U between the localized t2g (eg) electrons. Due to this large Coulomb interaction, we find U/W>1 (with the bandwidth W) in most TM halides, making them strongly correlated materials. Among the metallic TM halides in the paramagnetic state, the correlation strength U/W reaches a maximum in NiX2 and CrX3 with values much larger than the corresponding values in elementary TMs and other TM compounds. Based on the Stoner model and the calculated U and J values, we discuss the tendency of the electron spins to order ferromagnetically.
000892600 536__ $$0G:(DE-HGF)POF4-521$$a521 - Quantum Materials (POF4-521)$$cPOF4-521$$fPOF IV$$x0
000892600 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000892600 7001_ $$0P:(DE-HGF)0$$aHadipour, H.$$b1$$eCorresponding author
000892600 7001_ $$0P:(DE-Juel1)130937$$aSasioglu, Ersoy$$b2$$eCorresponding author
000892600 7001_ $$0P:(DE-Juel1)130644$$aFriedrich, Christoph$$b3$$eCorresponding author$$ufzj
000892600 7001_ $$00000-0003-3056-1063$$aJafari, S. A.$$b4
000892600 7001_ $$0P:(DE-Juel1)130548$$aBlügel, S.$$b5$$ufzj
000892600 7001_ $$0P:(DE-HGF)0$$aMertig, I.$$b6
000892600 773__ $$0PERI:(DE-600)2898355-5$$a10.1103/PhysRevMaterials.5.034001$$gVol. 5, no. 3, p. 034001$$n3$$p034001$$tPhysical review materials$$v5$$x2475-9953$$y2021
000892600 8564_ $$uhttps://juser.fz-juelich.de/record/892600/files/PhysRevMaterials.5.034001.pdf$$yOpenAccess
000892600 909CO $$ooai:juser.fz-juelich.de:892600$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000892600 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130644$$aForschungszentrum Jülich$$b3$$kFZJ
000892600 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130548$$aForschungszentrum Jülich$$b5$$kFZJ
000892600 9130_ $$0G:(DE-HGF)POF3-142$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Spin-Based Phenomena$$x0
000892600 9130_ $$0G:(DE-HGF)POF3-143$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Configuration-Based Phenomena$$x1
000892600 9131_ $$0G:(DE-HGF)POF4-521$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Materials$$x0
000892600 9141_ $$y2021
000892600 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-01-27
000892600 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-01-27
000892600 915__ $$0LIC:(DE-HGF)APS-112012$$2HGFVOC$$aAmerican Physical Society Transfer of Copyright Agreement
000892600 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYS REV MATER : 2019$$d2021-01-27
000892600 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-27
000892600 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-01-27
000892600 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2021-01-27
000892600 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000892600 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2021-01-27
000892600 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-27
000892600 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-01-27
000892600 9201_ $$0I:(DE-Juel1)IAS-1-20090406$$kIAS-1$$lQuanten-Theorie der Materialien$$x0
000892600 9201_ $$0I:(DE-Juel1)PGI-1-20110106$$kPGI-1$$lQuanten-Theorie der Materialien$$x1
000892600 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x2
000892600 9201_ $$0I:(DE-82)080012_20140620$$kJARA-HPC$$lJARA - HPC$$x3
000892600 980__ $$ajournal
000892600 980__ $$aVDB
000892600 980__ $$aUNRESTRICTED
000892600 980__ $$aI:(DE-Juel1)IAS-1-20090406
000892600 980__ $$aI:(DE-Juel1)PGI-1-20110106
000892600 980__ $$aI:(DE-82)080009_20140620
000892600 980__ $$aI:(DE-82)080012_20140620
000892600 9801_ $$aFullTexts