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We calculate the strength of the effective on-site Coulomb interaction (Hubbard U ) in two-dimensional
transition-metal (TM) dihalides MX2 and trihalides MX3 (M = Ti, V, Cr, Mn, Fe, Co, Ni; X = Cl, Br, I) from
first principles using the constrained random-phase approximation. The correlated subspaces are formed from
t2g or eg bands at the Fermi energy. Elimination of the efficient screening taking place in these narrow bands
gives rise to sizable interaction parameters U between the localized t2g (eg) electrons. Due to this large Coulomb
interaction, we find U/W > 1 (with the bandwidth W ) in most TM halides, making them strongly correlated
materials. Among the metallic TM halides in the paramagnetic state, the correlation strength U/W reaches a
maximum in NiX2 and CrX3 with values much larger than the corresponding values in elementary TMs and other
TM compounds. Based on the Stoner model and the calculated U and J values, we discuss the tendency of the
electron spins to order ferromagnetically.
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I. INTRODUCTION

Since the discovery of graphene [1,2], two-dimensional
(2D) materials have been extensively studied due to their rich
physical properties and diverse technological applications.
One of the important applications is the use of such 2D sys-
tems in spintronics for logic and memory applications [3–5].
In particular, 2D half-metallic magnets and spin-gapless semi-
conductors are desired for reconfigurable spintronic devices,
which combine memory and logic into a single device [6].
Despite substantial interest, most of the 2D materials are,
however, not magnetic in their pristine form. From a the-
oretical point of view, according to the Mermin-Wagner
theorem [7], long-range magnetic order is not possible in
2D systems at finite temperatures, but this restriction is re-
moved by magnetic anisotropy, which enables the formation
of long-range magnetic order even in monolayers. Several
standard approaches such as adsorption of atoms [8–12],
point defects [13–17], and edge engineering [18–22] were
developed to induce ferromagnetism in graphene and other
graphenelike 2D materials. However, these systematic ways
are not well controlled for realistic applications. Therefore
2D materials with intrinsic magnetism are of great interest for
testing theories of magnetism in low dimensions as well as for
ultralow-power memory and logic device applications.

Recently, intrinsic 2D ferromagnetism has been observed
in materials containing transition-metal (TM) atoms such as
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in Cr2Ge2Te6 [23], Fe3GeTe2, CrI3 [24–28], VSe2[29], and
MnSe2 [30]. For instance, it was observed that the CrI3 mono-
layer exhibits ferromagnetic order below Tc = 45 K [24].
VSe2 and MnSe2 were reported to have itinerant ferromag-
netic order even at room temperature [29,30]. Indeed, the
synthesis of the CrI3 monolayer has led to a huge experimen-
tal and theoretical interest. First-principles theoretical studies
have predicted that the long-range magnetic order is also pos-
sible in other 2D monolayers of TM dihalides and trihalides
(MX2 and MX3, M = V, Cr, Mn, Fe, Ni, and X = Cl, Br,
I) [31–41]. Besides CrI3, ferromagnetic order in the mono-
layers of other TM halides such as CrCl3 [42], CrBr3 [43,44],
NiI2 [45], and VI3 [46,47] was discovered experimentally and
confirmed theoretically [48–52].

Due to the presence of narrow t2g or eg states at the
Fermi level [34] as well as reduced screening and quan-
tum confinement effects arising from reduced dimensionality,
correlation effects are expected to play a crucial role in deter-
mining the electronic and magnetic properties of the 2D TM
halides. Density functional theory (DFT) based on the local
spin-density approximation (LSDA) or generalized gradient
approximation (GGA) may therefore not be a reliable method
to calculate the physical properties of TM halides. In this
respect, methods beyond DFT such as DFT + U and DFT
plus dynamical mean-field theory (DFT + DMFT) might be
necessary. Some TM halides have been studied by employ-
ing the DFT + U method [39,41,52], in which the effective
Coulomb interaction parameters U are chosen arbitrarily or
the U values of the 3D TMs are used. Only recently, a self-
consistent constrained DFT method within linear response
theory has been employed to calculate Hubbard U parameters
for VCl3, VI3, and CrX3 (X = Cl, Br, I) [50,51]. The obtained
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U parameters for V and Cr 3d orbitals turn out to be close to
the corresponding values in elementary transition metals and
other TM compounds [53,54].

The aim of this paper is a first-principles determina-
tion of the strength of the effective Coulomb interaction
(Hubbard U ) between localized electrons in 2D TM halides
MX2 and MX3 (M = V, Cr, Mn, Fe, Ni; X = Cl, Br,
I) by employing the constrained random-phase approxima-
tion (cRPA) approach [53,55,56] within the full-potential
linearized augmented plane-wave (FLAPW) method using
maximally localized Wannier functions (MLWFs) [57,58]. We
find that the Hubbard U parameters for t2g or eg electrons
in metallic TM halides (paramagnetic state) vary between
1.0 and 5.1 eV, giving correlation strengths U/W > 1, larger
than corresponding values in elementary TMs and other TM
compounds demonstrating strong electronic correlation in the
TM halides. Furthermore, based on the Stoner model, we use
the calculated U and J values to assess the stability of the
ferromagnetic ordering.

The rest of the paper is organized as follows: In Sec. II
we briefly present the computational method and the cRPA
method. In Sec. III, we present calculated values of Coulomb
interaction parameters for MX2 and MX3 for TM halides.
Finally, we summarize our conclusions in Sec. IV.

II. COMPUTATIONAL METHOD

We consider 2D TM halides with formulas MX2 and MX3

(M = Ti, V, Cr, Mn, Fe, Co, Ni; X = Cl, Br, I). Figures 1(a)
and 1(b) show the side and top views of the crystal structures
of MX2 dihalides and MX3 trihalides, respectively. The lattice
of TM dihalides consists of triangular nets of TM atoms
and exhibits geometrical frustration when the magnetic mo-
ments couple antiferromagnetically. On the other hand, the
TM atoms form honeycomb nets in MX3 trihalide monolay-
ers. The lattice parameters are taken from Refs. [33,38,39].
Simulation of MX2 and MX3 unit cells, containing 1 and 2 f.u.,
respectively, is based on the slab model having a 25-Å vacuum
separating them. For DFT calculations we use the FLEUR

code [59], which is based on the FLAPW method. For the
exchange correlation functional we use the GGA parametrized
by Perdew et al. [60] [the Perdew-Burke-Ernzerhof functional
(PBE)]. An 18 × 18 × 1 k-point grid is used for all systems.
A linear momentum cutoff of Gmax = 4.5 bohr−1 is chosen
for the plane waves. The effective Coulomb interaction pa-
rameters are calculated within the cRPA method [53,55,56]
implemented in the SPEX code [61,62] with Wannier or-
bitals constructed from projection onto localized muffin-tin
orbitals [58]. A dense 16 × 16 × 1 k-point grid is used for
the cRPA calculations.

To identify the correlated subspace and construct Wannier
functions properly, the non-spin-polarized projected density
of states (DOS) is calculated for all systems, and MLWFs
are constructed for t2g or eg orbitals. To verify the validity
of the calculated Wannier functions, in Figs. 2(a) and 2(b)
we present a comparison of the non-spin-polarized DFT-PBE
band structures with the corresponding Wannier-interpolated
band structures obtained with eg and t2g Wannier orbitals
for NiI2 and CrI3, respectively. In all cases, the original and
the Wannier-interpolated bands agree very well. The bands

FIG. 1. (a) Side and top views of the two-dimensional crystal
structure of TM dihalides MX2. (b) Side and top views of the two-
dimensional crystal structure of TM trihalides MX3. The blue and
purple spheres exhibit M and X atoms, respectively. The M atoms in
(a) form a frustrated triangular lattice, while in (b) their honeycomb
structure is a bipartite and hence nonfrustrated lattice.

around the Fermi energy, formed by Ni eg (Cr t2g) orbitals
in NiI2 (CrI3), are well separated from the rest of the bands.
They can thus be employed to define an effective two-orbital
(six-orbital) low-energy Hamiltonian. In a similar fashion,
correlated subspaces can be defined for all considered sys-
tems, of t2g and eg character for early and late TM halides,
respectively, as shown in Fig. 3. We note that the t2g-eg

splitting is small for some systems (in particular, for some
of the dihalides) [63]. It could, therefore, be necessary to
go beyond the present minimal subspace by including, for
example, the full d shell or by considering spin polarization.
However, it is already obvious from Fig. 3 that one might then
encounter the problem of entangled bands, which, on the one
hand, complicates the Wannier construction and, on the other,
makes the elimination of the subspace screening [Eq. (4)]
less straightforward. For the present comparative study of the
electron-electron interaction strength in a large class of mate-
rials, we therefore restrict ourselves to the minimal subspaces,
all formed by isolated sets of bands, which will capture the
essential physics of these materials. Our calculations may
serve as a reference point for more sophisticated studies of
any of the investigated materials in the future.

Due to the systems’ symmetry, the bands are not of pure t2g

and eg character but are mixtures and also exhibit admixture
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FIG. 2. DFT-PBE (red) and Wannier-interpolated band structures
(blue) of non-spin-polarized (a) NiI2 and (b) CrI3. (c) The eg-like
MLWFs for Ni atoms of NiI2. (d) The t2g-like MLWFs for Cr atoms
of CrI3.

from I p states. The denominations “t2g” and “eg” thus refer
to their dominant orbital character. We describe the orbitals in
more detail in the following.

In all systems, the TM atoms are each bound to six halogen
atoms in octahedral coordination. The octahedron is, how-
ever, tilted with respect to the standard Cartesian coordinate
system, which has the z axis perpendicular to the layers.
Furthermore, the octahedron is distorted because of the two
dimensionality of the structure. Opposite halogens are still
exactly opposite (forming a halogen-TM-halogen bond angle
of 180◦), whereas of the remaining 12 halogen-TM-halogen
bond angles, 6 are slightly below and 6 are slightly above 90◦.
For example, in NiI2 (CrI3) the difference to the right angle is
8.62◦ (1.13◦).

The octahedron is tilted in such a way that two opposite
faces of the octahedron are parallel to the layers. If we take the
three Ni-I bonds in NiI2, whose iodine ends form the corners
of one of these octahedron faces, as x′, y′, and z′ axes, we
can identify local eg orbitals [Fig. 2(c)]. The orbitals show
a strong admixture of iodine p states, a delocalization effect
which will be reflected in reduced interaction parameters later
on. Still, the dz′2 and dx′2−y′2 orbital character is readily seen.
In CrI3, the octahedron is similarly tilted, and we can con-

sider local x′, y′, z′ axes as above. While two of the orbitals
presented in Fig. 2(d) indeed look like t2g orbitals, the one in
the middle actually has the form of a dz2 orbital, which is,
however, oriented along the Cartesian z axis, perpendicular to
the layers. In fact, if we linearly combine the local t2g orbitals
by (dx′y′ + dy′z′ + dx′z′ )/

√
3, we obtain a dz2 orbital oriented

perpendicular to the layer. This linear combination results
from the breaking of octahedral symmetry caused by the layer
structure. The other two t2g orbitals, (dy′z′ − dx′y′ )/

√
2 and

(dx′y′ + dy′z′ − 2dx′z′ )/
√

6, can be described, respectively, as
a dx′y′ orbital rotated by 45◦ around the y axis and a distorted
dx′z′ orbital.

The fully screened Coulomb interaction Ũ is related to the
bare Coulomb interaction V by

Ũ (r, r′, ω) =
∫

dr′′ε−1(r, r′′, ω)V (r′′, r′), (1)

where ε(r, r′′, ω) is the dielectric function. The dielectric
function is related to the electron polarizability P by

ε(r, r′, ω) = δ(r − r′) −
∫

dr′′V (r, r′′)P(r′′, r′, ω), (2)

where the RPA polarization function P(r′′, r′, ω) is given by

P(r, r′, ω) = 2
occ∑
m

unocc∑
m′

ϕm(r)ϕ∗
m′ (r)ϕ∗

m(r′)ϕm′ (r′)

×
[

1

ω − �mm′ + iη
− 1

ω + �mm′ − iη

]
. (3)

Here, ϕm(r) are the single-particle DFT Kohn-Sham eigen-
functions, and η is a positive infinitesimal. �mm′ = εm′ − εm

with the Kohn-Sham eigenvalues εm.
In the cRPA approach, in order to exclude the screening

due to the correlated subspace, we separate the full polariza-
tion function of Eq. (3) into two parts

P = Pd + Pr, (4)

where Pd includes only the transitions (m → m′) between the
states of the correlated subspace and Pr is the remainder.
Then, the frequency-dependent effective Coulomb interaction
is given schematically by the matrix equation

U (ω) = [1 − V Pr (ω)]−1V. (5)

It contains, in Pr , screening processes that would not be cap-
tured by the correlated subspace and excludes the ones that
take place within the subspace.

The matrix elements of the effective Coulomb interaction
in the MLWF basis are given by

URn1,n3,n2,n4 (ω)

=
∫∫

drdr′w∗
n1R(r)wn3R(r)U (r, r′, ω)w∗

n4R(r′)wn2R(r′),

(6)

where wnR(r) is the MLWF at site R with orbital index n
and the effective Coulomb potential U (r, r′, ω) is calculated
within the cRPA as described above. We define the average
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FIG. 3. Orbital-resolved DOS for the non-spin-polarized MI2 and MI3 TM halides. Each panel shows the DOS projected onto 3d states of
the M atom as well as on 5p states of the I atom. The two distinct groups of d bands correspond to t2g and eg bands, respectively. The former
overlaps with 5p states in the late-TM iodides.

Coulomb matrix elements U , U ′, and J in the static limit
(ω = 0) as follows [64,65]:

U = 1

L

∑
m

Umm;mm, (7)

U ′ = 1

L(L − 1)

∑
m �=n

Umn;mn, (8)

J = 1

L(L − 1)

∑
m �=n

Umn;nm, (9)

where L is the number of localized orbitals, i.e., two for
eg orbitals and three for t2g orbitals. This parametrization
of partially screened Coulomb interactions is the so-called
Hubbard-Kanamori parametrization. Similar to the definition
of U (U ′, J), we can also define the so-called fully screened
interaction parameters Ũ (Ũ ′, J̃) as well as unscreened (bare)
V . The bare V provides information about the localization of
Wannier functions and is a useful parameter in the interpreta-
tion of the screened Coulomb interaction parameters.

III. RESULTS AND DISCUSSION

In the low-energy model Hamiltonian description of cor-
related solids, the noninteracting one-electron part of the
effective model is defined for a system in which there is
no spontaneous symmetry breaking, i.e., it is a paramag-
netic (non-spin-polarized) metal. The calculation of effective
Coulomb interaction parameters (Hubbard U ) should there-
fore be based on such a system.

To identify the correlated subspace for all studied TM
halides, we present in Fig. 3 orbital-resolved DOS for MI2 and
MI3. In all compounds except for the semiconducting FeI2 and
CoI3, the Fermi energy falls into a group of bands which are
of t2g character for the early halides, M = Ti to Mn (Ti to Fe)
for MI2 (MI3), and of eg character for the late halides, M = Co
and Ni (Ni) for MI2 (MI3). These bands are assumed to form

minimal correlated subspaces in this paper. On the other hand,
FeI2 and CoI3 are semiconducting with the Fermi level falling
in the energy gap between the t2g and eg bands. Depending on
the type of doping, electron or hole doping, only one type of
bands will form the minimal correlated subspace. For these
systems, we will present Hubbard U parameters for t2g, eg,
and d orbitals. The first two correspond to the zero-doping
limit (or very dilute doping), since the states of the subspace
are either all occupied or all empty. As hence no screening
takes place in the subspace, the partially and fully screened
parameters (e.g., U and Ũ ) are identical. The orbital-resolved
DOS of MX2 and MX3 with X = Cl and Br look very similar,
so the subspaces can be defined identically to those of the
iodides. The U matrix element of the p-admixed t2g state
differs from the pure t2g state by maximally 0.1 eV among the
materials. The calculated Hubbard U values should therefore
be applicable to standard DFT + U implementations that are
based on atomic bases, as well, not only to implementations
that employ Wannier functions.

In Table I, we present the on-site average intraorbital
unscreened (bare) Coulomb interaction V , partially (fully)
screened U (Ũ ), as well as average interorbital U ′ (Ũ ′) and
exchange parameter J (J̃). The behavior of the bare interaction
V for t2g orbitals across the 3d TM atoms, from Ti to Fe,
in MX2 is similar to the case of elementary TMs. The V
parameter increases nearly linearly with increasing electron
number, which is due to the contraction of the wave functions
with increased nuclear charge and the concomitant increased
localization of the Wannier functions. By contrast, the eg

orbitals exhibit the opposite trend from Fe to Ni in MX2: The
V decreases. An analysis of the shape of the Wannier orbitals
reveals that the coupling to neighboring halogen p states gets
stronger, which makes the orbitals increasingly spill into these
states giving rise to a delocalization and, therefore, to smaller
V parameters. The same trend is seen for MX3 from Co to
Ni. The behavior of V for the t2g orbitals in the trihalides is
somewhat different from that of the dihalides: While early in
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TABLE I. Lattice constants a, orbital type of correlated subspace, bandwidth W , on-site average intraorbital bare V , partially (fully)
screened U (Ũ ), interorbital partially (fully) screened U ′ (Ũ ′), partially (fully) screened exchange interaction J (J̃), correlation strength U/W ,
and the DOS at the Fermi level D(EF ) for MX2 and MX3 compounds.

MX2/3 a (Å) Orbitals W (eV) V (eV) U (Ũ ) (eV) U ′ (Ũ ′) (eV) J (J̃) (eV) U/W D(EF )

TiCl2 3.56 t2g 1.43 14.07 5.07 (0.87) 4.22 (0.43) 0.43 (0.23) 3.55 0.45
TiBr2 3.73 t2g 1.31 13.32 4.26 (0.79) 3.47 (0.41) 0.39 (0.19) 3.25 0.51
TiI2 4.11 t2g 1.15 11.70 3.26 (0.63) 2.61 (0.32) 0.33 (0.16) 2.83 0.73
VCl2 3.62 t2g 1.20 15.95 4.60 (0.95) 3.62 (0.63) 0.51 (0.16) 3.83 1.28
VBr2 3.81 t2g 1.03 14.96 3.98 (0.86) 3.03 (0.57) 0.49 (0.16) 3.86 1.91
VI2 4.08 t2g 0.94 13.63 3.10 (0.44) 2.33 (0.27) 0.39 (0.10) 3.30 2.25
CrCl2 3.55 t2g 1.05 17.32 4.13 (0.23) 3.13 (0.03) 0.54 (0.09) 3.93 4.50
CrBr2 3.74 t2g 0.99 16.51 3.64 (0.23) 2.68 (0.06) 0.51 (0.08) 3.68 4.87
CrI2 3.99 t2g 0.96 14.88 2.96 (0.26) 2.16 (0.07) 0.42 (0.10) 3.08 3.64
MnCl2 3.64 t2g 0.85 19.10 3.71 (0.82) 2.69 (0.62) 0.56 (0.08) 4.36 6.41
MnBr2 3.84 t2g 0.81 18.12 3.25 (0.29) 2.29 (0.06) 0.52 (0.07) 4.01 6.02
MnI2 4.12 t2g 0.75 17.19 2.76 (0.26) 1.90 (0.04) 0.46 (0.06) 3.68 4.18
FeCl2 3.49 t2g 1.10 20.11 3.50 (3.50) 2.43 (2.43) 0.56 (0.56) 3.18 0.00

eg 0.70 17.00 3.06 (3.06) 2.06 (2.06) 0.50 (0.50) 4.37 0.00
d 2.41 19.96 5.97 (3.21) 4.84 (2.42) 0.57 (0.42) 2.48 0.00

FeBr2 3.69 t2g 0.97 19.02 3.14 (3.14) 2.11 (2.11) 0.53 (0.53) 3.24 0.00
eg 0.78 15.24 2.64 (2.64) 1.76 (1.76) 0.44 (0.44) 3.38 0.00
d 2.37 19.13 5.21 (3.07) 3.86 (2.20) 0.55 (0.42) 2.20 0.00

FeI2 3.98 t2g 0.80 17.39 2.52 (2.52) 1.66 (1.66) 0.44 (0.44) 3.15 0.00
eg 0.91 12.83 2.03 (2.03) 1.36 (1.36) 0.33 (0.33) 2.23 0.00
d 2.21 17.64 4.07 (3.05) 2.98 (1.67) 0.53 (0.38) 1.84 0.00

CoCl2 3.49 eg 0.59 16.51 3.18 (0.38) 2.20 (0.26) 0.49 (0.06) 5.39 3.26
CoBr2 3.73 eg 0.61 14.93 2.67 (0.19) 1.82 (0.07) 0.42 (0.06) 4.38 3.51
CoI2 3.92 eg 0.64 12.26 2.16 (0.16) 1.52 (0.03) 0.32 (0.07) 3.38 4.54
NiCl2 3.45 eg 0.53 15.17 3.37 (0.16) 2.43 (0.04) 0.47 (0.06) 6.36 4.12
NiBr2 3.64 eg 0.59 13.52 3.09 (0.22) 2.27 (0.07) 0.41 (0.07) 5.24 3.28
NiI2 3.94 eg 0.62 10.60 2.36 (0.44) 1.78 (0.27) 0.29 (0.09) 3.81 2.76

TiCl3 5.88 t2g 1.16 14.48 4.62 (0.68) 3.75 (0.24) 0.46 (0.22) 3.98 1.09
TiBr3 6.27 t2g 1.08 14.15 3.97 (0.51) 3.12 (0.16) 0.43 (0.17) 3.68 0.82
TiI3 6.62 t2g 1.01 12.86 2.99 (0.37) 2.26 (0.06) 0.38 (0.15) 2.96 0.61
VCl3 6.04 t2g 0.91 16.28 4.49 (0.31) 3.46 (0.04) 0.54 (0.14) 4.93 1.17
VBr3 6.33 t2g 0.86 15.59 3.82 (0.36) 2.84 (0.09) 0.51 (0.14) 4.44 1.86
VI3 6.86 t2g 0.82 14.47 2.91 (0.28) 2.07 (0.06) 0.44 (0.12) 3.55 2.44
CrCl3 5.75 t2g 0.81 16.53 4.08 (0.48) 3.07 (0.20) 0.53 (0.17) 5.04 2.72
CrBr3 6.34 t2g 0.76 16.24 3.50 (0.31) 2.52 (0.12) 0.51 (0.10) 4.61 2.40
CrI3 6.85 t2g 0.61 15.29 2.67 (0.25) 1.84 (0.10) 0.44 (0.08) 4.38 2.47
MnCl3 6.08 t2g 0.85 18.05 3.64 (0.56) 2.63 (0.30) 0.55 (0.13) 4.28 2.15
MnBr3 6.39 t2g 0.79 17.28 3.15 (0.55) 2.19 (0.31) 0.51 (0.13) 3.99 3.19
MnI3 6.85 t2g 0.65 15.73 2.62 (0.48) 1.61 (0.26) 0.44 (0.12) 4.03 3.39
FeCl3 6.05 t2g 0.82 18.14 3.30 (0.33) 2.32 (0.14) 0.54 (0.09) 4.02 2.52
FeBr3 6.43 t2g 0.78 17.24 2.85 (0.29) 1.92 (0.11) 0.50 (0.09) 3.65 2.47
FeI3 6.97 t2g 0.69 15.29 2.14 (0.22) 1.37 (0.03) 0.41 (0.08) 3.10 2.62
CoCl3 6.07 t2g 0.65 16.82 2.95 (2.95) 2.05 (2.05) 0.50 (0.50) 4.54 0.00

eg 0.45 13.95 2.43 (2.43) 1.67 (1.67) 0.38 (0.38) 5.40 0.00
d 1.72 16.21 3.60 (2.70) 2.67 (2.04) 0.47 (0.35) 2.09 0.00

CoBr3 6.30 t2g 0.93 14.47 2.45 (2.45) 1.67 (1.67) 0.43 (0.43) 2.63 0.00
eg 0.78 12.84 2.11 (2.11) 1.42 (1.42) 0.34 (0.34) 2.71 0.00
d 2.45 14.27 3.08 (2.23) 2.26 (1.71) 0.39 (0.31) 1.26 0.00

CoI3 6.81 t2g 1.62 10.34 1.34 (1.34) 0.94 (0.94) 0.24 (0.24) 0.83 0.00
eg 1.10 10.92 1.48 (1.48) 0.96 (0.96) 0.26 (0.26) 1.35 0.00
d 3.32 10.65 2.10 (1.40) 1.55 (1.05) 0.24 (0.18) 0.63 0.00

NiCl3 6.05 eg 0.63 11.76 2.01 (0.15) 1.39 (0.04) 0.31 (0.06) 3.19 2.52
NiBr3 6.16 eg 0.75 10.55 1.79 (0.25) 1.22 (0.11) 0.28 (0.07) 2.39 1.85
NiI3 6.64 eg 0.91 8.55 1.08 (0.24) 0.69 (0.10) 0.20 (0.07) 1.19 1.40
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the series from Ti to Co we see a similar increase to that in the
dihalides, the values go over a maximum and drop off sharply
for CoX3. In all cases, we see a decrease in the bare V for the
halide series MX2 with X = Cl to I, which is likely caused by
the increase in the lattice constant in this order, making the
orbitals more extended.

The effects are reflected also in the bandwidths W of the t2g

and eg bands presented in Table I (also see Fig. 3), which tend
to decrease from Ti to Ni, similar to the case of elementary
3d TMs with the difference that, due to reduced coordination
(reduced hybridization) in 2D, the W is much smaller than the
corresponding values in 3d TMs, making the t2g and eg peaks
in the DOS sharper and more atomiclike.

To discuss the partially screened (Hubbard U ) effective
Coulomb interaction parameters, we focus on the TM iodides.
As seen in Table I, the U values for M sites in MI2 (MI3)
compounds vary between 2.1 and 3.3 eV (between 1.1 and
3.0 eV) and decrease with moving from Ti to Ni, which can
be described by the projected density of states in Fig. 3. Just
below the d states there is a broad peak of iodine 5p states,
which should contribute with 5p → d transitions sizably to
the screening. Across the series Ti to Ni, the 5p states are seen
to approach the d states, which effectively increases the elec-
tronic screening and, thus, acts to compensate the increase in
U caused by Wannier localization, giving rise to the reduction
of U parameters with increasing 3d electron number in both
types of TM halides. The same behavior is observed in Br-
and Cl-based TM halides (see Table I).

Moving upwards in the group of halogens, from I to Cl,
the M-X bond lengths decrease. As a consequence, orbitals
overlap more strongly, and hybridization increases, pushing
the states apart energetically. The larger energy difference
makes electronic transitions p → t2g less likely and reduces
electronic screening. From this, one would expect to see a
tendency to larger Hubbard U values, which is, in fact, what
we observe in Table I.

Comparing the partially screened (U ) with the fully
screened parameters (Ũ ) gives information about the screen-
ing within the correlated subspace. Except for the semicon-
ductors FeM2 and CoM3, this screening is metallic. It is very
efficient and becomes the dominant screening channel. As a
consequence, the fully screened parameters Ũ show a behav-
ior very different from U : The values are all very small for
the metallic systems and fall in the range between 0.1 and
0.5 eV, about one-fifth of the U values. They do not follow
a specific trend across the TM series, nor do they follow a
general ordering with respect to the different kinds of halides
(Cl, Br, I) as in the partially screened U parameters. Our
results show that t2g → t2g and eg → eg transitions contribute
substantially to the screening of the fully screened Coulomb
interaction Ũ in metallic systems, while in the semiconducting
ones this screening vanishes, making Ũ identical to U for the
t2g and eg orbitals, whereas the t2g → eg transitions reduce Ũ
with respect to U for the full 3d shell.

In the semiconducting cases FeX2 and CoX3, the 3d pa-
rameters show a behavior parallel to that of the t2g and eg

parameters and are larger by about 20–70%, elucidating that
transitions between t2g and eg states play an important quan-
titative role in the electronic screening but do not affect the
screening qualitatively.

In cubic symmetry, the Hubbard-Kanamori interorbital
Coulomb interaction term U ′ satisfies the relation U ′ = U −
2J . This relation is nearly fulfilled in most TM halides, even
though cubic symmetry is broken. The J parameters vary in
the range 0.20–0.57 eV and show a behavior very much in
parallel with the bare parameters V , despite the very differ-
ent range of values, which reveals a more quantitative than
qualitative effect of the electronic screening on the exchange
parameters J .

We now compare our calculated Hubbard U values with
ones reported in the literature. Besbes et al. [48] calculated
Hubbard U values for bulk CrCl3 and CrI3 and obtained U
values of 1.79 eV (CrCl3) and 1.15 eV (CrI3), which are
significantly smaller than our calculated Coulomb matrix ele-
ments presented in Table I, whereas their exchange parameters
are larger (0.85 and 0.78 eV) than our values. A possible
reason for the disagreement is the different dimensionality
of the systems, 3D versus 2D. Three-dimensional materials
usually offer more screening with the consequence of smaller
U parameters. There are other possible reasons: Besbes et al.
employ a method different from ours, a combined constrained
local-density approximation (cLDA) and RPA scheme [66].
They also used a different Wannier basis. They combined
chromium d and halogen p states into a larger Wannier basis
for a d p tight-binding description, whereas we have em-
ployed minimal t2g and eg subspaces. Finally, the definition
of the Hubbard U parameter is different. We have calculated
Hubbard-Kanamori parameters for the t2g and eg subsets [see
Eq. (7)], whereas Besbes et al. defined the Hubbard parame-
ters for the full atomic p and d shells. In this different kind of
U parameter the averaging is over the full matrix instead of
just over the diagonal elements.

In the case of V-based trihalides, He et al. calculated U val-
ues for VCl3 and VI3 using the self-consistent linear response
method within the cLDA approach and obtained U = 3.35 eV
(for VCl3) and 3.68 eV (for VI3) [50]. These values are closer
to our results.

In the following, we discuss the appearance of ferromag-
netism in TM halides. The ferromagnetic state is the ground
state for most of the TM trihalides MX3, while TM dihalides
MX2 exhibit diverse magnetic behavior ranging from half-
metallic ferromagnetism (FeCl2) to antiferromagnetism (VI2)
and from 120◦ antiferromagnetism (MnI2) to helical mag-
netism (NiI2), a richness of magnetic phases that results from
the triangular lattice of M atoms, which frustrates the ex-
change coupling. Such a frustration is not present for MX3

compounds, where M atoms reside on a bipartite (honeycomb)
lattice. The calculation of U parameters for such complex
magnetic ground states is beyond the scope of this paper. Note
that such a calculation would require the full 3d shell to be
included in the correlated subspace. The present values for
the minimal t2g and eg subspaces would not be immediately
applicable in this case.

Among the TM trihalides, CrI3 is of particular interest for
spintronic applications as well as theories of low-dimensional
magnetism because it was one of the first materials in which
ferromagnetism was detected experimentally in the mono-
layer limit. It is a ferromagnetic semiconductor with a Curie
temperature of 45 K in the monolayer and 61 K in the
bulk.
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FIG. 4. (a) Stoner criterion for MI2 and MI3 TM halides. (b) Cal-
culated magnetic moments (in units of μB) of TM atoms for MI2 and
MI3 TM halides.

As the MX2 and MX3 halides contain partially filled 3d
TM atoms, we can use the simple Stoner model to discuss the
appearance of ferromagnetism in these materials. The Stoner
criterion for ferromagnetism is given by I · D(EF ) > 1, where
I is the Stoner parameter and D(EF ) is the DOS at the Fermi
energy in the nonmagnetic state. The Hartree-Fock solution
of the multiorbital Hubbard model gives a relationship be-
tween the Stoner parameter I , Hubbard U , and exchange J
of I = (U + 6J )/5 [67]. Stollhoff et al. showed that in ele-
mentary TMs the electron correlations reduce I by roughly
40%. We note that the magnetism in some of the TM halides
might not be describable by the simple Stoner mechanism.
For example, MnI2 has an antiferromagnetic (120◦) ground
state. For reasons of consistency, we nevertheless discuss the
Stoner condition for all materials and leave more detailed
analyses taking into account Hund’s rule coupling for future
studies. In Fig. 4(a) we present the correspondingly scaled
Stoner parameter I · D(EF ) for iodine-based compounds. The
experimentally observed and theoretically predicted ferro-
magnetic TM halides satisfy the Stoner criterion, and the
paramagnetic state is unstable toward the formation of fer-
romagnetism, which reasonably agrees with the results of
spin-polarized DFT total energy calculations and the large
magnetic moments presented in Fig. 4(b). The failure of the
Stoner criterion to predict the ferromagnetism of FeI2 is due
to the fact that this compound is a semiconductor, while the
Stoner criterion is based on a metallic parent (noninteracting)
limit.

With this tendency to form magnetic ground states, one
might wonder whether and to what degree the Hubbard U
parameters would change if a magnetic ground state were
taken as reference system instead of the non-spin-polarized
one. For instance, for the case of MnI2, we obtain a U value of
3.37 eV, which is not too different from the paramagnetic case
(2.76 eV). This might be due to the fact that the formation of
the magnetic moments predominantly affects the low-energy
states, but these are just the ones that make up the correlated
subspace whose screening channels are eliminated from the
effective Hubbard U interaction.

Finally, we want to briefly discuss the strength of the
electronic correlations in 2D TM halides. Qualitatively, the
correlation strength is defined as the ratio of the effective
Coulomb interaction U to the bandwidth W (U/W ). In Table I
we present U/W values for all TM halides. Note that the U/W
values are calculated for a non-spin-polarized (paramagnetic)

state. In the case of MX2 and ignoring the nonmetallic sys-
tem (FeX2), the correlation strength U/W tends to increase
from Ti- to Ni-based materials. There is no clear trend in the
trihalides, although a strong decrease in U/W is noted for
the eg subspace in the iodides and, less pronounced, also in
the bromides. For most of the metallic TM halides, we find
U/W > 2 with maxima for NiCl2 and CrCl3. We thus expect
electron correlations to be strong in these materials. They
should play an important role in model Hamiltonian studies
of the TM halides.

As a consequence of U/W > 1, one may expect rich cor-
relation phenomena such as magnetic order, Mott insulating
phases, etc. For instance, in contrast to experimental re-
sults [46,47] showing insulating behavior in VI3, the partially
filled bands in PBE calculations give rise to a half-metallic be-
havior [49,50]. This implies that electron-electron interactions
play a crucial role in electronic and magnetic properties of
TM halides, especially in the systems with nearly-half-filled
3d bands. Applying the DFT + U method with U = 3.8 eV
to MnX2 dihalides not only increases the band gap but also
results in ferromagnetic order, whereas these systems remain
antiferromagnetic when calculated without U [41]. In the case
of VI3, DFT + U employing U = 3.5 eV opens a finite band
gap of about 0.84 eV [49], which is in agreement with ex-
periments, while the system is a half metal within DFT-PBE.
VI3 is therefore commonly classified as a Mott insulator. This
inconsistency between experiment and DFT-PBE has also
been found for CrX3, manifesting a possible Mott insulating
state [31,36]. Experimentally, CrI3 is insulating [24,25,28]
even above the Curie temperature, which suggests that the
band gap does not stem from the exchange splitting (i.e.,
from magnetism) but that the strong electron-electron cor-
relation is responsible for the formation of the band gap in
this material. There are theoretical works that argue that the
band gap of Cr-based trihalides can be described as a mixture
of Mott-Hubbard and charge-transfer types [36]. Note that
layered materials that exhibit a Mott insulating character are
very rare. The Mott phase has been experimentally discovered
in twisted bilayer graphene [68–70], a

√
13 × √

13 supercell
of 1T-TaS(Se)2 and 1T-NbSe2 materials (the Star of David
cluster) [71–73], and TM phosphorous trichalcogenides [74],
MPX3, where M is a TM and X are chalcogen elements,
which was confirmed by ab initio calculations [70,75,76]. In
all mentioned monolayers, the observed insulating phase has
been discussed to originate from the presence of narrow bands
around the Fermi energy. For example, in the distorted phase
of 1T-TaS2, there is a flat band with mainly dz2 character at EF

which increases U/W substantially [77–79], even though the
Coulomb interaction parameter U has been calculated to be
0.4 eV only [79], which is significantly smaller than the cor-
responding value U = 2.27 eV in undistorted 1T-TaS2 [80].
Such narrow bands, of t2g or eg character, are also present
in CrI3, VI3, and NiI2, resulting in a large U/W difference
between TM halides and elementary TMs.

IV. SUMMARY AND OUTLOOK

We have performed systematic ab initio calculations to
determine the strength of the effective Coulomb interaction
(Hubbard U ) between localized electrons in various 2D TM
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halides with formulas MX2 and MX3 (M = Ti, V, Cr, Mn, Fe,
Co, Ni; X = Cl, Br, I) employing the parameter-free cRPA
scheme. We found that in most of the metallic TM halides (in
the nonmagnetic state) the Hubbard U parameters for t2g or
eg electrons are larger than 3.0 eV, and the bandwidths W are
less than 1.0 eV. As a consequence, we find that U/W > 1.
So, these materials can be classified as moderately to strongly
correlated systems. The correlation strength in TM halides is
much larger than the corresponding values in elementary TMs
and TM compounds. Furthermore, using the calculated U and
J values, we discuss the stability of the ferromagnetic ordering
within the Stoner model. The obtained Coulomb interaction
parameters are important both for a basic understanding of the
physics of TM halides and for use in model Hamiltonians ap-
plied to describe electronic, magnetic, and optical properties
of these materials.

The ferromagnetic state of MX3 compounds can undergo
thermal and quantum fluctuations. The thermal fluctuations
are relevant to all of them. This provides a nice experi-
mental handle to study the role of the underlying magnetic
background in transport and other properties by tuning the
temperature across the Curie temperature. This is a unique
opportunity not present in generic two-dimensional materials.
For the compounds with small magnetic moment, the quan-
tum fluctuations are expected to play a significant role. The
effective theory of small fluctuations around a magnetically
ordered state is known as the nonlinear sigma model [81].
The quantum flucuations describe spin-1 bosons known as

magnons. Such bosons can mediate forces between the elec-
trons, pretty much the same way gauge bosons (photons)
mediate the Coulomb interactions. The part of the interaction
mediated by spin-1 bosons cannot be screened [82]. Therefore
our MX3 compounds having smaller magnetic moments are
expected to display many unexpected correlation phenomena,
such as non-Fermi liquids. The present paradigm for study
of correlation physics in 2D systems, unlike high-temperature
superconductors or heavy fermion systems, is not buried in
the bulk, but lives in a true 2D layer. This paradigm can there-
fore enjoy most of the control and functionalization methods
developed in the context of graphene [83].

Furthermore, in analogy to graphene nanoribbons [84],
where armchair ribbons offer low-energy one-dimensional
bands, the nanoribbons of TM halides are expected to serve
as a new platform for strongly correlated one-dimensional
bands. Such bands are spatially separated from the other
bands, and hence the fascinating Luttinger physics can be
studied using local probes. Also gapping out the edge modes
in such ribbons [85] in the present correlated systems can
be an interesting framework for electronic applications that
require an energy gap, albeit with substantial Mott character.

ACKNOWLEDGMENTS
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