000892607 001__ 892607
000892607 005__ 20240610120650.0
000892607 0247_ $$2doi$$a10.1140/epjc/s10052-021-09169-7
000892607 0247_ $$2ISSN$$a1434-6044
000892607 0247_ $$2ISSN$$a1434-6052
000892607 0247_ $$2Handle$$a2128/27874
000892607 0247_ $$2WOS$$aWOS:000650628100001
000892607 0247_ $$2altmetric$$aaltmetric:101269360
000892607 037__ $$aFZJ-2021-02196
000892607 082__ $$a530
000892607 1001_ $$0P:(DE-Juel1)187208$$avon Detten, L.$$b0$$eCorresponding author
000892607 245__ $$aOn the scalar ${\pi K}$ form factor beyond the elastic region
000892607 260__ $$aHeidelberg$$bSpringer$$c2021
000892607 3367_ $$2DRIVER$$aarticle
000892607 3367_ $$2DataCite$$aOutput Types/Journal article
000892607 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1622198826_14508
000892607 3367_ $$2BibTeX$$aARTICLE
000892607 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000892607 3367_ $$00$$2EndNote$$aJournal Article
000892607 520__ $$aPion–kaon (πK) pairs occur frequently as final states in heavy-particle decays. A consistent treatment of πK scattering and production amplitudes over a wide energy range is therefore mandatory for multiple applications: in Standard Model tests; to describe crossed channels in the quest for exotic hadronic states; and for an improved spectroscopy of excited kaon resonances. In the elastic region, the phase shifts of πK scattering in a given partial wave are related to the phases of the respective πK form factors by Watson’s theorem. Going beyond that, we here construct a representation of the scalar πK form factor that includes inelastic effects via resonance exchange, while fulfilling all constraints from πK scattering and maintaining the correct analytic structure. As a first application, we consider the decay τ→KSπντ, in particular, we study to which extent the S-wave K∗0(1430) and the P-wave K∗(1410) resonances can be differentiated and provide an improved estimate of the CP asymmetry produced by a tensor operator.
000892607 536__ $$0G:(DE-HGF)POF4-111$$a111 - Energiesystemtransformation (POF4-111)$$cPOF4-111$$fPOF IV$$x0
000892607 536__ $$0G:(GEPRIS)196253076$$aDFG project 196253076 - TRR 110: Symmetrien und Strukturbildung in der Quantenchromodynamik (196253076)$$c196253076$$x1
000892607 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000892607 7001_ $$0P:(DE-HGF)0$$aNoël, F.$$b1$$eCorresponding author
000892607 7001_ $$0P:(DE-Juel1)131182$$aHanhart, Christoph$$b2
000892607 7001_ $$00000-0003-1113-9377$$aHoferichter, M.$$b3
000892607 7001_ $$00000-0002-1541-6581$$aKubis, B.$$b4
000892607 773__ $$0PERI:(DE-600)1459069-4$$a10.1140/epjc/s10052-021-09169-7$$gVol. 81, no. 5, p. 420$$n5$$p420$$tThe European physical journal / C$$v81$$x1434-6052$$y2021
000892607 8564_ $$uhttps://juser.fz-juelich.de/record/892607/files/Detten2021_Article_OnTheScalarVarvecPiK%CE%A0KFormFact.pdf$$yOpenAccess
000892607 8564_ $$uhttps://juser.fz-juelich.de/record/892607/files/piKFFbeyond_arXiv.pdf$$yOpenAccess
000892607 909CO $$ooai:juser.fz-juelich.de:892607$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000892607 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)187208$$aForschungszentrum Jülich$$b0$$kFZJ
000892607 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131182$$aForschungszentrum Jülich$$b2$$kFZJ
000892607 9130_ $$0G:(DE-HGF)POF3-511$$1G:(DE-HGF)POF3-510$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lSupercomputing & Big Data$$vComputational Science and Mathematical Methods$$x0
000892607 9131_ $$0G:(DE-HGF)POF4-111$$1G:(DE-HGF)POF4-110$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Energie$$lEnergiesystemdesign (ESD)$$vEnergiesystemtransformation$$x0
000892607 9141_ $$y2021
000892607 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-01-27
000892607 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-27
000892607 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000892607 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2021-01-27
000892607 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bEUR PHYS J C : 2019$$d2021-01-27
000892607 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2021-01-27
000892607 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2021-01-27
000892607 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-27
000892607 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-01-27
000892607 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-01-27
000892607 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2021-01-27
000892607 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000892607 915__ $$0StatID:(DE-HGF)0571$$2StatID$$aDBCoverage$$bSCOAP3 sponsored Journal$$d2021-01-27
000892607 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2021-01-27
000892607 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-01-27
000892607 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2021-01-27$$wger
000892607 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2021-01-27
000892607 915__ $$0StatID:(DE-HGF)0570$$2StatID$$aSCOAP3
000892607 9201_ $$0I:(DE-Juel1)IAS-4-20090406$$kIAS-4$$lTheorie der Starken Wechselwirkung$$x0
000892607 9201_ $$0I:(DE-Juel1)IKP-3-20111104$$kIKP-3$$lTheorie der starken Wechselwirkung$$x1
000892607 9801_ $$aFullTexts
000892607 980__ $$ajournal
000892607 980__ $$aVDB
000892607 980__ $$aUNRESTRICTED
000892607 980__ $$aI:(DE-Juel1)IAS-4-20090406
000892607 980__ $$aI:(DE-Juel1)IKP-3-20111104
000892607 981__ $$aI:(DE-Juel1)IAS-4-20090406