001     892607
005     20240610120650.0
024 7 _ |a 10.1140/epjc/s10052-021-09169-7
|2 doi
024 7 _ |a 1434-6044
|2 ISSN
024 7 _ |a 1434-6052
|2 ISSN
024 7 _ |a 2128/27874
|2 Handle
024 7 _ |a WOS:000650628100001
|2 WOS
024 7 _ |a altmetric:101269360
|2 altmetric
037 _ _ |a FZJ-2021-02196
082 _ _ |a 530
100 1 _ |a von Detten, L.
|0 P:(DE-Juel1)187208
|b 0
|e Corresponding author
245 _ _ |a On the scalar ${\pi K}$ form factor beyond the elastic region
260 _ _ |a Heidelberg
|c 2021
|b Springer
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1622198826_14508
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Pion–kaon (πK) pairs occur frequently as final states in heavy-particle decays. A consistent treatment of πK scattering and production amplitudes over a wide energy range is therefore mandatory for multiple applications: in Standard Model tests; to describe crossed channels in the quest for exotic hadronic states; and for an improved spectroscopy of excited kaon resonances. In the elastic region, the phase shifts of πK scattering in a given partial wave are related to the phases of the respective πK form factors by Watson’s theorem. Going beyond that, we here construct a representation of the scalar πK form factor that includes inelastic effects via resonance exchange, while fulfilling all constraints from πK scattering and maintaining the correct analytic structure. As a first application, we consider the decay τ→KSπντ, in particular, we study to which extent the S-wave K∗0(1430) and the P-wave K∗(1410) resonances can be differentiated and provide an improved estimate of the CP asymmetry produced by a tensor operator.
536 _ _ |a 111 - Energiesystemtransformation (POF4-111)
|0 G:(DE-HGF)POF4-111
|c POF4-111
|f POF IV
|x 0
536 _ _ |a DFG project 196253076 - TRR 110: Symmetrien und Strukturbildung in der Quantenchromodynamik (196253076)
|0 G:(GEPRIS)196253076
|c 196253076
|x 1
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Noël, F.
|0 P:(DE-HGF)0
|b 1
|e Corresponding author
700 1 _ |a Hanhart, Christoph
|0 P:(DE-Juel1)131182
|b 2
700 1 _ |a Hoferichter, M.
|0 0000-0003-1113-9377
|b 3
700 1 _ |a Kubis, B.
|0 0000-0002-1541-6581
|b 4
773 _ _ |a 10.1140/epjc/s10052-021-09169-7
|g Vol. 81, no. 5, p. 420
|0 PERI:(DE-600)1459069-4
|n 5
|p 420
|t The European physical journal / C
|v 81
|y 2021
|x 1434-6052
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/892607/files/Detten2021_Article_OnTheScalarVarvecPiK%CE%A0KFormFact.pdf
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/892607/files/piKFFbeyond_arXiv.pdf
909 C O |o oai:juser.fz-juelich.de:892607
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)187208
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)131182
913 0 _ |a DE-HGF
|b Key Technologies
|l Supercomputing & Big Data
|1 G:(DE-HGF)POF3-510
|0 G:(DE-HGF)POF3-511
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-500
|4 G:(DE-HGF)POF
|v Computational Science and Mathematical Methods
|x 0
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Energiesystemdesign (ESD)
|1 G:(DE-HGF)POF4-110
|0 G:(DE-HGF)POF4-111
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Energiesystemtransformation
|x 0
914 1 _ |y 2021
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2021-01-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-01-27
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2021-01-27
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b EUR PHYS J C : 2019
|d 2021-01-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2021-01-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2021-01-27
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-01-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2021-01-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2021-01-27
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2021-01-27
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0571
|2 StatID
|b SCOAP3 sponsored Journal
|d 2021-01-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2021-01-27
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2021-01-27
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2021-01-27
|w ger
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2021-01-27
915 _ _ |a SCOAP3
|0 StatID:(DE-HGF)0570
|2 StatID
920 1 _ |0 I:(DE-Juel1)IAS-4-20090406
|k IAS-4
|l Theorie der Starken Wechselwirkung
|x 0
920 1 _ |0 I:(DE-Juel1)IKP-3-20111104
|k IKP-3
|l Theorie der starken Wechselwirkung
|x 1
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IAS-4-20090406
980 _ _ |a I:(DE-Juel1)IKP-3-20111104
981 _ _ |a I:(DE-Juel1)IAS-4-20090406


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21