000892608 001__ 892608 000892608 005__ 20210623133351.0 000892608 0247_ $$2doi$$a10.1103/PhysRevLett.126.192001 000892608 0247_ $$2ISSN$$a0031-9007 000892608 0247_ $$2ISSN$$a1079-7114 000892608 0247_ $$2ISSN$$a1092-0145 000892608 0247_ $$2Handle$$a2128/27870 000892608 0247_ $$2pmid$$a34047611 000892608 0247_ $$2WOS$$aWOS:000652838800002 000892608 0247_ $$2altmetric$$aaltmetric:95675462 000892608 037__ $$aFZJ-2021-02197 000892608 082__ $$a530 000892608 1001_ $$00000-0002-7504-3107$$aDu, Meng-Lin$$b0$$eCorresponding author 000892608 245__ $$aWhere Is the Lightest Charmed Scalar Meson? 000892608 260__ $$aCollege Park, Md.$$bAPS$$c2021 000892608 3367_ $$2DRIVER$$aarticle 000892608 3367_ $$2DataCite$$aOutput Types/Journal article 000892608 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1622193815_14509 000892608 3367_ $$2BibTeX$$aARTICLE 000892608 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000892608 3367_ $$00$$2EndNote$$aJournal Article 000892608 520__ $$aThe lightest charmed scalar meson is known as the D∗0(2300), which is one of the earliest new hadron resonances observed at modern B factories. We show here that the parameters assigned to the lightest scalar D meson are in conflict with the precise LHCb data of the decay B−→D+π−π−. On the contrary, these data can be well described by an unitarized chiral amplitude containing a much lighter charmed scalar meson, the D∗0(2100). We also extract the low-energy S-wave Dπ phase of the decay B−→D+π−π− from the data in a model-independent way, and show that its difference from the Dπ scattering phase shift can be traced back to an intermediate ρ− exchange. Our work highlights that an analysis of data consistent with chiral symmetry, unitarity, and analyticity is mandatory in order to extract the properties of the ground-state scalar mesons in the singly heavy sector correctly, in analogy to the light scalar mesons f0(500) and K∗0(700) 000892608 536__ $$0G:(DE-HGF)POF4-511$$a511 - Enabling Computational- & Data-Intensive Science and Engineering (POF4-511)$$cPOF4-511$$fPOF IV$$x0 000892608 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de 000892608 7001_ $$00000-0002-2919-2064$$aGuo, Feng-Kun$$b1 000892608 7001_ $$0P:(DE-Juel1)131182$$aHanhart, Christoph$$b2$$ufzj 000892608 7001_ $$00000-0002-1541-6581$$aKubis, Bastian$$b3 000892608 7001_ $$0P:(DE-Juel1)131252$$aMeißner, Ulf-G.$$b4 000892608 773__ $$0PERI:(DE-600)1472655-5$$a10.1103/PhysRevLett.126.192001$$gVol. 126, no. 19, p. 192001$$n19$$p192001$$tPhysical review letters$$v126$$x1079-7114$$y2021 000892608 8564_ $$uhttps://juser.fz-juelich.de/record/892608/files/PhysRevLett.126.192001.pdf$$yOpenAccess 000892608 909CO $$ooai:juser.fz-juelich.de:892608$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire 000892608 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131182$$aForschungszentrum Jülich$$b2$$kFZJ 000892608 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131252$$aForschungszentrum Jülich$$b4$$kFZJ 000892608 9130_ $$0G:(DE-HGF)POF3-511$$1G:(DE-HGF)POF3-510$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lSupercomputing & Big Data$$vComputational Science and Mathematical Methods$$x0 000892608 9131_ $$0G:(DE-HGF)POF4-511$$1G:(DE-HGF)POF4-510$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lEngineering Digital Futures – Supercomputing, Data Management and Information Security for Knowledge and Action$$vEnabling Computational- & Data-Intensive Science and Engineering$$x0 000892608 9141_ $$y2021 000892608 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-02-02 000892608 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-02-02 000892608 915__ $$0StatID:(DE-HGF)1230$$2StatID$$aDBCoverage$$bCurrent Contents - Electronics and Telecommunications Collection$$d2021-02-02 000892608 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0 000892608 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2021-02-02 000892608 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2021-02-02 000892608 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2021-02-02 000892608 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-02-02 000892608 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-02-02 000892608 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess 000892608 915__ $$0StatID:(DE-HGF)0571$$2StatID$$aDBCoverage$$bSCOAP3 sponsored Journal$$d2021-02-02 000892608 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYS REV LETT : 2019$$d2021-02-02 000892608 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-02-02 000892608 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bPHYS REV LETT : 2019$$d2021-02-02 000892608 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2021-02-02$$wger 000892608 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-02-02 000892608 915__ $$0StatID:(DE-HGF)0570$$2StatID$$aSCOAP3 000892608 9201_ $$0I:(DE-Juel1)IAS-4-20090406$$kIAS-4$$lTheorie der Starken Wechselwirkung$$x0 000892608 980__ $$ajournal 000892608 980__ $$aVDB 000892608 980__ $$aUNRESTRICTED 000892608 980__ $$aI:(DE-Juel1)IAS-4-20090406 000892608 9801_ $$aFullTexts