000892609 001__ 892609
000892609 005__ 20220930130317.0
000892609 0247_ $$2doi$$a10.1016/j.neuroimage.2021.118176
000892609 0247_ $$2ISSN$$a1053-8119
000892609 0247_ $$2ISSN$$a1095-9572
000892609 0247_ $$2Handle$$a2128/27893
000892609 0247_ $$2altmetric$$aaltmetric:106053720
000892609 0247_ $$2pmid$$a34000399
000892609 0247_ $$2WOS$$aWOS:000671132300003
000892609 037__ $$aFZJ-2021-02198
000892609 082__ $$a610
000892609 1001_ $$0P:(DE-Juel1)178611$$aJung, Kyesam$$b0$$ufzj
000892609 245__ $$aTractography density affects whole-brain structural architecture and resting-state dynamical modeling
000892609 260__ $$aOrlando, Fla.$$bAcademic Press$$c2021
000892609 3367_ $$2DRIVER$$aarticle
000892609 3367_ $$2DataCite$$aOutput Types/Journal article
000892609 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1642081434_3687
000892609 3367_ $$2BibTeX$$aARTICLE
000892609 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000892609 3367_ $$00$$2EndNote$$aJournal Article
000892609 520__ $$aDynamical modeling of the resting-state brain dynamics essentially relies on the empirical neuroimaging data utilized for the model derivation and validation. There is however still no standardized data processing for magnetic resonance imaging pipelines and the structural and functional connectomes involved in the models. In this study, we thus address how the parameters of diffusion-weighted data processing for structural connectivity (SC) can influence the validation results of the whole-brain mathematical models informed by SC. For this, we introduce a set of simulation conditions including the varying number of total streamlines of the whole-brain tractography (WBT) used for extraction of SC, cortical parcellations based on functional and anatomical brain properties and distinct model fitting modalities. The main objective of this study is to explore how the quality of the model validation can vary across the considered simulation conditions. We observed that the graph-theoretical network properties of structural connectome can be affected by varying tractography density and strongly relate to the model performance. We also found that the optimal number of the total streamlines of WBT can vary for different brain atlases. Consequently, we suggest a way how to improve the model performance based on the network properties and the optimal parameter configurations from multiple WBT conditions. Furthermore, the population of subjects can be stratified into subgroups with divergent behaviors induced by the varying WBT density such that different recommendations can be made with respect to the data processing for individual subjects and brain parcellations.
000892609 536__ $$0G:(DE-HGF)POF4-5231$$a5231 - Neuroscientific Foundations (POF4-523)$$cPOF4-523$$fPOF IV$$x0
000892609 536__ $$0G:(DE-HGF)POF4-5232$$a5232 - Computational Principles (POF4-523)$$cPOF4-523$$fPOF IV$$x1
000892609 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000892609 7001_ $$0P:(DE-Juel1)131678$$aEickhoff, Simon B.$$b1$$ufzj
000892609 7001_ $$0P:(DE-Juel1)131880$$aPopovych, Oleksandr V.$$b2$$eCorresponding author$$ufzj
000892609 773__ $$0PERI:(DE-600)1471418-8$$a10.1016/j.neuroimage.2021.118176$$gp. 118176 -$$p118176 -$$tNeuroImage$$v237$$x1053-8119$$y2021
000892609 8564_ $$uhttps://juser.fz-juelich.de/record/892609/files/Invoice_OAD0000120196.pdf
000892609 8564_ $$uhttps://juser.fz-juelich.de/record/892609/files/1-s2.0-S1053811921004535-main.pdf$$yOpenAccess
000892609 8767_ $$8OAD0000120196$$92021-05-18$$d2021-05-20$$eAPC$$jZahlung erfolgt$$zBelegnr. 1200167254
000892609 909CO $$ooai:juser.fz-juelich.de:892609$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire$$pdnbdelivery
000892609 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)178611$$aForschungszentrum Jülich$$b0$$kFZJ
000892609 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131678$$aForschungszentrum Jülich$$b1$$kFZJ
000892609 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131880$$aForschungszentrum Jülich$$b2$$kFZJ
000892609 9131_ $$0G:(DE-HGF)POF4-523$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5231$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vNeuromorphic Computing and Network Dynamics$$x0
000892609 9131_ $$0G:(DE-HGF)POF4-523$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5232$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vNeuromorphic Computing and Network Dynamics$$x1
000892609 9130_ $$0G:(DE-HGF)POF3-574$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$vTheory, modelling and simulation$$x0
000892609 9141_ $$y2021
000892609 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-01-29
000892609 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-29
000892609 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2021-01-29
000892609 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2021-01-29
000892609 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2021-01-29
000892609 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNEUROIMAGE : 2019$$d2021-01-29
000892609 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2021-01-29
000892609 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2021-01-29
000892609 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-29
000892609 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2021-01-29
000892609 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-01-29
000892609 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000892609 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2021-01-29
000892609 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2021-01-29
000892609 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bNEUROIMAGE : 2019$$d2021-01-29
000892609 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2021-01-29
000892609 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-01-29
000892609 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000892609 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2021-01-29$$wger
000892609 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-01-29
000892609 920__ $$lyes
000892609 9201_ $$0I:(DE-Juel1)INM-7-20090406$$kINM-7$$lGehirn & Verhalten$$x0
000892609 980__ $$ajournal
000892609 980__ $$aVDB
000892609 980__ $$aI:(DE-Juel1)INM-7-20090406
000892609 980__ $$aAPC
000892609 980__ $$aUNRESTRICTED
000892609 9801_ $$aAPC
000892609 9801_ $$aFullTexts