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a b s t r a c t 

Dynamical modeling of the resting-state brain dynamics essentially relies on the empirical neuroimaging data uti- 

lized for the model derivation and validation. There is however still no standardized data processing for magnetic 

resonance imaging pipelines and the structural and functional connectomes involved in the models. In this study, 

we thus address how the parameters of diffusion-weighted data processing for structural connectivity (SC) can 

influence the validation results of the whole-brain mathematical models informed by SC. For this, we introduce 

a set of simulation conditions including the varying number of total streamlines of the whole-brain tractography 

(WBT) used for extraction of SC, cortical parcellations based on functional and anatomical brain properties and 

distinct model fitting modalities. The main objective of this study is to explore how the quality of the model 

validation can vary across the considered simulation conditions. We observed that the graph-theoretical network 

properties of structural connectome can be affected by varying tractography density and strongly relate to the 

model performance. We also found that the optimal number of the total streamlines of WBT can vary for differ- 

ent brain atlases. Consequently, we suggest a way how to improve the model performance based on the network 

properties and the optimal parameter configurations from multiple WBT conditions. Furthermore, the population 

of subjects can be stratified into subgroups with divergent behaviors induced by the varying WBT density such 

that different recommendations can be made with respect to the data processing for individual subjects and brain 

parcellations. 
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. Introduction 

Some 15 years ago, the human brain connectome was introduced to

nderstand functional brain states which are emerged by structural ar-

hitecture ( Sporns et al., 2005 ). Over more than a decade, researchers

ave been investigating the human connectome to elucidate the rela-

ionship between structure and function ( Goñi et al., 2014; van den

euvel and Sporns, 2011; Sporns, 2011; Suárez et al., 2020 ). Recently,

etwork neuroscience provides integrative perspectives to validate bio-

hysically realistic models via structural connectome ( Bassett et al.,

018 ). However, the lack of ground truth and golden standards for the

alculation of the human connectome caused a central body of ongo-

ng debates in the literature to validate the macroscopic structural and

unctional connectivity from neuroimaging data of the human brain

 Lindquist, 2020; Maier-Hein et al., 2017; Parkes et al., 2018 ). In ad-

ition, no consensus method has been accepted so far as a standardized

pproach for calculating the whole-brain connectome ( Schilling et al.,

019; Sotiropoulos and Zalesky, 2019 ). Many studies have investigated

he effects of the data processing on the obtained results with respect
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o reproducibility with different methodologies for structural architec-

ure ( Bassett et al., 2011; Buchanan et al., 2014; Cammoun et al., 2012;

ennis et al., 2012; Messaritaki et al., 2019; Owen et al., 2013; Roine

t al., 2019 ), functional homogeneity ( Bellec et al., 2015; Thirion et al.,

014 ), and cortical resolutions for brain modeling ( Proix et al., 2016 ).

hese studies reported good-to-excellent reliability or stable outcome

 Dennis et al., 2012; Owen et al., 2013 ), recommendation ( Messaritaki

t al., 2019; Roine et al., 2019 ), and limitations ( Buchanan et al., 2014 ).

t this stage, researchers summarized the influence of data processing

or structural brain network measures ( Qi et al., 2015 ). Nevertheless,

ost of the used techniques, algorithms and parameters for processing

he neuroimaging data remain at the level of the best practice lacking a

olid theoretical foundation. 

Without the ground truth, a model-based approach can be a pos-

ible way to investigate the impact of the data processing on the

bserved brain dynamics and reveal the corresponding mechanisms

 Popovych et al., 2019 ). At this, it is assumed that the considered mathe-

atical models derived from the interactions between brain regions can

losely simulate the dynamics of the brain responses. By comparing the

imulated and empirical data, we can address the model performance
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s given by the results of the model fitting and thoroughly explore the

odel parameters and dynamics. Consequently, we can apply the model

alidation to evaluate the data processing by searching for the optimal

odel parameters that provide the best fitting of the model against the

mpirical data ( Cabral et al., 2011; Endo et al., 2020; Zimmermann

t al., 2018 ). Such an evaluation procedure can be repeated for sev-

ral modeling conditions, where the parameters of the data processing

re varied. In this manner, we can systematically approach the optimal

odeling condition and data parameters used for the data processing,

hich enhances the agreement between the simulated and empirical

ata. 

Previous studies have used different whole-brain tractography

WBT) densities ranging from 5K to 100M tracked streamlines for the

uman connectome ( Bajada et al., 2019; Hagmann et al., 2008; Honey

t al., 2009; Prasad et al., 2013; Proix et al., 2016; Roine et al., 2019 ).

n particular, Roine et al. (2019) tested the reproducibility of graph-

heoretical measures across varied streamline densities from 10K to

00M and concluded that tractography density should be sufficiently

igh for excellent reproducibility. High tractography density is also ben-

ficial for highlighting subtle clinical differences, and already 15K-20K

treamlines may be sufficient to differentiate between patients with

lzheimer’s disease or mild cognitive impairment from healthy con-

rols ( Prasad et al., 2013 ). However, the impact of the WBT density

n the human connectome is still unclear. Besides, the derivation of the

hole-brain models essentially relies on the underlying network calcu-

ated from the whole-brain empirical structural connectivity (SC). The

atter provides the brain architecture serving as a backbone for the mod-

ling of brain dynamics ( Cabral et al., 2011; Endo et al., 2020; Honey

t al., 2009; Zimmermann et al., 2018 ). It is however difficult to eval-

ate whether the selected parameters of the data processing for WBT

ensity (e.g., the number of WBT streamlines) are reliably reflecting the

rain architecture, and what are the optimal values for modeling, e.g.,

or maximal similarity between simulated and empirical data. In this

tudy, we address the latter problem and search for the optimal config-

rations which could lead to the optimal SC extraction resulting in the

est fit between the simulated and empirical data. 

The broad spectrum of the computational models used for simula-

ion of the brain dynamics ranges from the micro- to the macro-scale

 Deco et al., 2008; Endo et al., 2020; Freeman, 1987; Hodgkin and Hux-

ey, 1952; Jansen and Rit, 1995; Wilson and Cowan, 1973 ). Besides

he sophisticated computational modeling concepts, the responses of

rain regions can be considered as a harmonized signal ( Buzsaki, 2011 ).

hus, we can also use simple mathematical models of coupled oscilla-

ors to generate oscillating brain activity ( Breakspear et al., 2010; Ku-

amoto, 1984; Rodrigues et al., 2016 ). In particular, systems of coupled

hase and generic limit-cycle oscillators were suggested by previous

tudies for modeling cortical oscillations of the resting-state blood oxy-

en level-dependent (BOLD) dynamics ( Breakspear et al., 2010; Cabral

t al., 2011; Deco and Kringelbach, 2016; Deco et al., 2017; Fukushima

nd Sporns, 2018; Ponce-Alvarez et al., 2015 ). These studies reported

he maximal agreement between simulated and empirical data as given

y the Pearson correlation between simulated and empirical functional

onnectivity (FC) in the range between 0.3 and 0.7. In this study, we

onsider such a system of coupled phase oscillators to model the slow

scillations of the resting-state BOLD dynamics. 

The main topic of the current study is to investigate the impact of

he WBT streamline number used for calculation of SC and the average

treamline path-length (PL) between brain regions on the simulation re-

ults. We considered a system of coupled phase oscillators with delayed

oupling ( Yeung and Strogatz, 1999 ), where the anatomical information

bout brain structural architecture (SC and PL) from diffusion-weighted

RI (dwMRI) was used for its derivation, i.e., to build the model net-

ork and approximate the coupling weights and time delay between the

etwork nodes. The latter are the brain regions parceled according to a

iven brain atlas/brain parcellation. We considered two distinct brain

arcellations based on anatomical and functional brain properties. We
2 
ystematically explored the model parameter space of two free param-

ters of global coupling and global delay in order to fit the model to

mpirical data. We also used two model fitting modalities as given by

) similarity (Pearson correlation) between simulated and empirical FC

s a goodness-of-fit of the model and 2) similarity between simulated

C and empirical SC to probe the dynamics of the model as related to its

tructural network. The obtained simulation results were compared with

ach other across subjects and simulation conditions, which allowed us

o scrutinize the effects of structural architecture modulated by varying

BT density and brain parcellations on the model validation against

mpirical data. The used approach can also lead to a better understand-

ng of the properties of the obtained data influenced by selected data

rocessing, which can play a key role for the brain modeling as well as

ata analytics. 

. Materials and methods 

The current study considered 351 unrelated subjects (172

ales, age 28.5 ± 3.5 years) from the Human Connectome

roject (HCP) S1200 dataset ( Van Essen et al., 2013 ). HCP data

 https://www.humanconnectome.org ) were acquired using protocols

pproved by the Washington University institutional review board

Mapping the Human Connectome: Structure, Function, and Heri-

ability; IRB #201204036). Informed consent was obtained from sub-

ects. Anonymized data are publicly available from ConnectomeDB

 https://db.humanconnectome.org ). In the current study, resting-state

unctional MRI (fMRI), T1-weighted image (T1) and diffusion-weighted

mages (DWI) from 3T connectome scanners (modified Siemens PRISMA

ith higher gradient strength) were used for investigation. Resting-state

MRI was acquired with 2 mm isotropic voxels, T1 was in 0.7 mm

sotropic voxels, and DWI consisted of 90 directions for 1000, 2000 and

000 s/ 𝑚𝑚 

2 b-values in total 270 weighted directions with 1.25 mm

sotropic voxels. 

We reconstructed SC and PL by using six WBT densities and two at-

ases for individual subjects, then calculated simulated FC from BOLD

ignals generated by the computational model composed of coupled

hase oscillators with delayed coupling. We explored two free param-

ters of the model for each subject and condition and validated the

odel through the two model fitting modalities. We also calculated

raph-theoretical network properties of SC and PL over considered con-

itions and compared the network properties with the goodness-of-fit of

he model. The individual subjects were stratified into groups based on

hree criteria derived by the network properties and modeling results.

he workflow of the current study is illustrated in Fig. 1 . 

.1. Preprocessing of MRI data and connectivity extraction 

The current study used an in-house pipeline for the extraction of SC

nd PL matrices from the DWIs. The pipeline consists of four modules:

reprocessing of MRI and DWI data, WBT calculation, atlas transfor-

ation and connectivity reconstruction. The pipeline is publicly avail-

ble ( https://github.com/inm7/vbc _ dwmri ). It was optimized for paral-

el processing on high-performance computational clusters ( Jülich Su-

ercomputing Centre, 2018 ). 

The pipeline was created with functions of Freesurfer ( Dale et al.,

999 ), FSL ( Smith et al., 2004 ), ANTs ( Tustison et al., 2010 ), and

Rtrix3 ( Tournier et al., 2019 ). Freesurfer was used for processing the

1 including bias-field correction, tissue segmentation, cortical (sur-

ace) reconstruction, volume-surface converting, and surface deforma-

ion for parcellation as well as for the correction of the eddy-current

istortions and head-motion in DWIs using the corresponding b-vectors

nd b-values. MRtrix3 performed de-noising and bias-field correction

n the DWIs. The pre-processed images were used for co-registration

etween the T1 and the DWIs and linear and non-linear transformation

y functions of FSL. Linear and non-linear transformation matrices and

mages for registration from the standard MNI space to the native space

https://www.humanconnectome.org
https://db.humanconnectome.org
https://github.com/inm7/vbc_dwmri
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Fig. 1. Workflow of the current study. (a) The whole-brain tractography (WBT) was generated by an in-house pipeline. Structural connectivity (SC) and average 

path-length (PL) between brain regions were reconstructed based on a given brain parcellation/brain atlas (6 WBTs and 2 atlases). (b) The empirical BOLD signals 

were extracted for each brain region from the ICA-FIX preprocessed HCP data, and the empirical functional connectivity (FC) was calculated between BOLD signals 

by Pearson correlation coefficient. (c) By using the empirical SC and PL matrices, the whole-brain network was reconstructed. The network nodes representing the 

brain regions were equipped with the phase oscillators ( Eq 1 ) coupled with the coupling weights ( Eq 2 ) and time delays ( Eq 3 ) extracted from the empirical SC and 

PL matrices, respectively. The natural frequencies of the oscillators were extracted from empirical BOLD signals. The model generated simulated BOLD signals used 

for the calculation of the simulated FC. (d) The simulated FC was compared with empirical FC and SC, and the model was validated by optimizing its parameters 

for the best correspondence/fitting between the simulated and empirical data. At this, the impact of the data processing on the model validation was evaluated and 

described. 
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nd vice versa were estimated. Through the image registration, gray

atter, white matter, cortical/subcortical, cerebellar and cerebrospinal

uid masks were generated in the native DWI space. 

The WBT calculation module included only MRtrix3 functions,

here the response functions for spherical deconvolution were esti-

ated using multi-shell-multi-tissue constrained deconvolution algo-

ithm ( Jeurissen et al., 2014 ). Fiber oriented distributions (FOD) were

stimated from the DWIs using spherical deconvolution, and the WBT

as created through the fiber tracking by the second-order integration

ver the FOD by a probabilistic algorithm ( Tournier et al., 2010 ). In the

atter step, we used six different numbers of total streamlines for varying

BT density: 10K, 50K, 100K, 500K, 2M, and 10M, where the “K ” and

M ” letters stand for thousand (Kilo-) and million (Mega-), respectively.

he tracking parameters were set as default values of tckgen function

rom MRtrix documentation ( https://mrtrix.readthedocs.io ), where the

ollowing values were used: step size = 0.625 mm, angle = 45 degrees,

inimal length = 2.5 mm, maximal length = 250 mm, FOD amplitude

or terminating tract = 0.06, maximum attempts per seed = 50, maxi-

um number of sampling trials = 1000, and down sampling = 3. 

The atlas transformation module applied the linear and non-linear

ransformation matrix and images to atlases that were sampled in the

tandard MNI space. We used the Schaefer atlas with 100-area parcella-

ion ( Schaefer et al., 2018 ) and the Harvard-Oxford atlas with 96 cortical

egions ( Desikan et al., 2006 ). After the transformation, the labeled vox-

ls in the gray matter mask were selected for a seed and a target region.

 

o  

3 
onsequently, the tck2connectome function of MRtrix3 reconstructed SC

nd PL (count and path-length matrices in Fig 1 a). 

For the empirical FC, the BOLD signals were extracted from the

esting-state fMRI data processed by ICA-FIX as provided by HCP repos-

tory ( Griffanti et al., 2014 ). During the ICA-FIX, a weak high-pass

ltering (2000 s high-pass filter) was applied for detrending-like ef-

ect ( Smith et al., 2013 ). The Schaefer atlas and the Harvard-Oxford

tlas were applied for the parcellation of the processed fMRI into

rain regions within the standard MNI 2 mm space (6th-generation in

SL). Empirical FC was calculated using Pearson correlation coefficient

cross BOLD signals extracted as mean signals of the parceled brain re-

ions. There were four resting-state fMRI sessions (1200 volumes, TR =
20 ms) which consist of two different phase-encoding directions (left

nd right) scanned in different days. In addition, a concatenated BOLD

ignal was generated by using all four z-scored BOLD signals from the

bove four fMRI sessions, which resulted in five empirical FCs calcu-

ated for BOLD signals from the four fMRI sessions and the concatenated

OLD signals for each subject. Finally, 12 simulation conditions (6 WBTs

2 atlases) were tested by simulation of the mathematical whole-brain

odel, where the model parameters were optimized for the best fit be-

ween simulated and empirical data. 

.2. Mathematical whole-brain model 

We simulated a whole-brain dynamical model of 𝑁 coupled phase

scillators ( Cabral et al., 2011; Kuramoto, 1984; Yeung and Strogatz,

https://mrtrix.readthedocs.io
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999 ) 

̇  𝑖 ( 𝑡 ) = 2 𝜋𝑓 𝑖 + 

𝐶 

𝑁 

𝑁 ∑
𝑗=1 

𝑘 ij sin 
(
𝜑 𝑗 

(
𝑡 − 𝜏ij 

)
− 𝜑 𝑖 ( 𝑡 ) 

)
+ 𝜂𝑖 , 

𝑖 = 1 , 2 , … , 𝑁. (1) 

he number of oscillators 𝑁 corresponds to the number of brain regions

arceled as defined by a given brain atlas, where 𝜑 𝑖 ( 𝑡 ) models the phase

f the mean BOLD signal of the corresponding region, and the simulated

OLD was calculated as sin 
(
𝜑 𝑖 ( 𝑡 ) 

)
. 𝐶 is a global coupling which scales

he level of couplings of the whole-brain network. 𝜂𝑖 is an independent

oise perturbing oscillator 𝑖 , which is sampled from a random uniform

istribution from the interval [-0.3,0.3]. The natural frequencies 𝑓 𝑖 were

stimated from the empirical data as frequencies of the maximal spectral

eaks (restricted to the frequency range from 0.01 Hz to 0.1 Hz) of the

mpirical BOLD signals of the corresponding brain regions. 𝑘 𝑖𝑗 stands for

he coupling strength between oscillators 𝑖 and 𝑗, and 𝜏𝑖𝑗 approximates

he time delay of the signal propagation between oscillators 𝑖 and 𝑗.

hey were calculated from the empirical SC and PL and determined by

he following equations: 

 𝑖𝑗 = 

𝑤 𝑖𝑗 

< 𝑊 > 

, (2)

here 𝑤 𝑖𝑗 is the number of streamlines between 𝑖 𝑡ℎ and 𝑗 𝑡ℎ parceled

egions and < 𝑊 > is an averaged number of streamlines over all con-

ections except self-connections, and 

𝑖𝑗 = 

𝐿 𝑖𝑗 

< 𝑉 > 

= 𝜏𝐿 𝑖𝑗 , (3) 

here 𝜏 is a global delay (unit: 𝑠 ∕ 𝑚 ) which is a reciprocal of an average

peed of signal propagation < 𝑉 > through the whole-brain network.

he time step of the numerical integration of Eq 1 by the stochastic Heun

ethod was fixed to 0.04 s, and the simulated signals were generated for

500 seconds after skipping 500 seconds of the transient. The simulated

OLD signals and the corresponding simulated FCs were calculated from

he phases downsampled to TR = 0.72 s, which is the repetition time of

CP fMRI. 

The considered mathematical model ( Eq 1 ) has two main free pa-

ameters: the global coupling 𝐶 and the global time delay 𝜏. The global

oupling ranged from 0 to 0.504 in evenly discretely distributed 64 val-

es, and the global delay was from 0 to 423 s/m in evenly discretely

istributed 48 values. Therefore, 3072 (64 × 48) simulations were per-

ormed for each subject to calculate the simulated FCs that were com-

ared with empirical functional and structural data for each simulation

ondition. A total of 12,939,264 (64 × 48 × 12 × 351) simulations of

odel ( Eq 1 ) were performed in this study for 351 subjects with 12

onditions (6 WBTs × 2 atlases). 

We explored the 2-dimensional model parameter space as men-

ioned above and found the optimal parameter values for the best corre-

pondence between simulated and empirical data. The correspondence

as calculated by Pearson correlation coefficient between simulated FC

sFC) and empirical FC (eFC) and SC (eSC) depending on the model fit-

ing modality. For each subject and simulation condition, 5 parameter

lanes of the functional similarity or functional model fitting modality (cor-

elation between sFC and eFC) were obtained corresponding to 5 eFCs.

n addition, one parameter plane of the structure-functional similarity or

tructure-functional model fitting modality (correlation between sFC and

SC) was also calculated. From each parameter plane, we selected the

ptimal ( 𝐶, 𝜏) -parameter point, where the maximal correlation between

he simulated and the empirical data was reached. For the functional

odel fitting the maximal similarity can be referred to as goodness-of-fit

f the model. 

.3. Effects of different WBT conditions 

We revealed the effects of the varying WBT density on the model-

ng results by evaluating its impact on 1) the graph-theoretical network
4 
roperties of empirical structural connectome, 2) patterns of the optimal

odel parameters in the model parameter space, and 3) model perfor-

ance as given by the quality of the model fitting over simulation con-

itions. Based on the results from the three approaches, we introduced

hree criteria (see below) for differentiation of the influence of the WBT

ensity on the modeling results for individual subjects. To do this, we

tratified the entire subject population by splitting it into several sub-

roups according to the mentioned criteria based on (i) the relationships

etween the network properties and the results of the functional model

tting over WBT conditions, (ii) distributions of the optimal model pa-

ameters of the structure-functional model fitting, and (iii) positive and

egative slopes (increments) of the goodness-of-fit values (model per-

ormance) across the two extreme cases of the considered 10K and 10M

BT streamlines for individual subjects. 

.3.1. Structural architecture and network properties over WBT conditions 

To investigate the impact of the varying WBT density on the archi-

ecture of structural networks, we calculated graph-theoretical network

roperties from SC and PL for each subject, WBT condition and atlas.

he considered 6 network properties (4 local properties and 2 global

roperties) included the weighted node degree, clustering coefficient,

etweenness centrality, local efficiency, global efficiency and modular-

ty, which were calculated by the brain connectivity toolbox version

019-03-03 in Matlab ( Rubinov and Sporns, 2010 ). For the local prop-

rties, both the average (Avg.) and the standard deviation (S.D.) were

alculated. 

For every subject, we calculated the Pearson correlation between the

alues of a given network measure and the maximal functional model

tting (goodness-of-fit) values across varied WBT densities. Then, for

very considered network measure, we split the subjects into two sub-

roups with positive and negative correlations. After that, we performed

he two-sample one-tail t -test to compare the functional model fitting be-

ween the split subgroups. Based on the results of the t -test, we selected

he network properties, where one of the subgroups showed significantly

igher functional model fitting than the other subgroup (Fig. A5 in Sup-

lementary materials). Finally, we overlapped all selected subgroups

ith higher goodness-of-fit over all selected network properties and re-

erred to this group as pattern 1. Consequently, the rest of subjects were

nited into the second group referred to as pattern 2. We thus stratified

ll subjects into two groups/patterns with potentially different impact

f the WBT conditions on the modeling results. 

.3.2. Impact of time delay on the model fitting 

For another stratification criterion, the optimal model parameters of

he maximal correspondence between sFC and eSC were divided into

wo clusters as suggested by the bimodal distribution splitting small

nd large values of the optimal time delay ( Fig 6 ). Since subjects can

ove between the parameter clusters when the total number of the WBT

treamlines varies from 10M to 10K, we separated the subjects into five

lasses: Always staying in cluster 1 (From 1 to 1) or in cluster 2 (From

 to 2), only once moving either from cluster 1 to cluster 2 (From 1

o 2) or in opposite direction (From 2 to 1), and performing multiple

witching between the two clusters (Multiple). This approach based on

he distribution of the optimal model parameters was used as the second

riterion for stratification of subjects. 

.3.3. Variation of the model performance 

The last stratification criterion was based on the behavior of the opti-

al goodness-of-fit values when the number of WBT streamlines varied.

o quantify it, we calculated the increment of the maximal similarity be-

ween sFC and eFC matrices of the concatenated session for every indi-

idual subject when the number of the WBT streamlines increases from

0K to 10M. Then, all subjects were divided into two subgroups exhibit-

ng either positive or negative slopes (increments) of the goodness-of-fit

ehavior versus the number of WBT streamlines ( Fig 7 ). According to
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Table 1 

Sensitivity of the considered graph-theoretical network properties to the variation of the WBT 

density as revealed by the non-parametric one-way analysis of variance (Kruskal-Wallis ANOVA) 

test. The corresponding p-values are presented in the right columns of the tables, where the bold 

p-values indicate that the respective network property significantly changes (Bonferroni corrected 

𝑝 < . 05 ) when the number of WBT streamlines varies in the range indicated in the left columns of 

the tables. The results are shown for the Schaefer atlas (upper table) and the Harvard-Oxford atlas 

(lower table), and the abbreviations in the upper rows denote the network properties. WD: average 

weighted node degree, CC: average clustering coefficient, BC: average betweenness centrality, LE: 

average local efficiency, GE: global efficiency, and MQ: modularity Q. 

Schaefer atlas WD CC BC LE GE MQ 

10K, 50K, 100K, 500K, 2M, 10M < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 

50K, 100K, 500K, 2M, 10M < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 

100K, 500K, 2M, 10M < 0.001 < 0.001 0.009 < 0.001 < 0.001 < 0.001 

500K, 2M, 10M 0.994 < 0.001 0.920 < 0.001 0.999 0.011 

2M, 10M 0.916 < 0.001 0.929 < 0.001 0.947 1.000 

Harvard-Oxford atlas WD CC BC LE GE MQ 

10K, 50K, 100K, 500K, 2M, 10M < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 

50K, 100K, 500K, 2M, 10M < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 

100K, 500K, 2M, 10M 0.992 < 0.001 0.012 < 0.001 1.000 < 0.001 

500K, 2M, 10M 0.996 < 0.001 1.000 < 0.001 1.000 0.005 

2M, 10M 1.000 < 0.001 1.000 < 0.001 1.000 0.913 
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his criterion, the subjects were stratified into two subgroups demon-

trating the best functional model fitting for either maximal or minimal

umber of the WBT streamlines considered. Consequently, we used all

hree criteria for the three-step stratification analysis ( Fig 8 ). 

. Results 

We investigate all three stratification criteria mentioned in the Meth-

ds ( Section 2.3 ) and apply them to subject differentiation. This provides

n insight into the impact of the WBT density on the model performance

or individual subjects and suggests optimal configurations of the data

rocessing parameters. To follow the stratification steps, the obtained

esults will be presented in parallel for the two considered brain parcel-

ations based on the Schaefer and Harvard-Oxford atlases and compared

etween them. 

.1. Impacts of WBT density on structural connectome 

Figure 2 illustrates the similarities between SC and PL ( Fig 2 a and

) and behavior of the weighted node degree, clustering coefficient, be-

weenness centrality, local and global efficiencies and modularity calcu-

ated from the normalized SC matrix over 6 WBT conditions (10K, 50K,

00K, 500K, 2M, and 10M streamlines) for the two atlases ( Fig 2 b and

). The similarity of the eSC matrices to the 10M case remains relatively

igh except for the largest drop at 10K ( Fig 2 a1 and c1). On the other

and, the PL matrices have low similarity over the 6 WBT conditions,

ery quickly deviate from the 10M case, exhibit practically no correla-

ion already for 100K and weakly anti-correlate for 10K ( Fig 2 a2 and

2). We also performed a non-parametric one-way analysis of variance

Kruskal-Wallis ANOVA) test over the WBT conditions ( Table 1 ). 

By increasing the number of streamlines from 10K to 10M, the num-

er of network edges increases, and the nodes become densely con-

ected, which resulted in monotonically increasing average binarized

discarded weights of edges) node degrees as expected (Fig. A1 in Sup-

lementary materials). However, the weighted node degree based on

he normalized count matrices (SC divided by its mean) used in model

 Eq 1 ) shows relatively stationary behavior across the WBT conditions,

specially, for dense WBT ( Fig 2 b1 and d1 and Table 1 WD). Decreas-

ng the number of streamlines, for example, from 10M to 10K (by 1000

olds) resulted in the corresponding reduction of the averaged weighted

ode degree of the normalized SC by 6% and 33% for the Schaefer and

arvard-Oxford atlases, respectively ( Fig 2 b1 and d1). Similar station-

ry behavior can also be observed for the average betweenness centrality
5 
nd the global efficiency, especially, for dense WBT conditions ( Fig 2 b3,

5, d3, and d5 and Table 1 BC and GE). The network modularity shows

 weak monotonic increase when the WBT density increases ( Fig 2 b6

nd d6). For these network measures, relatively moderate changes were

bserved when the number of streamlines varies from 10M to 10K. This

ndicates that the connectivity in the model is still relatively strong, and

ome other properties of the network architecture are to a large extent

reserved even for the extreme case of 10K WBT. 

On the other hand, the average clustering coefficient, local efficiency

nd their variances strongly decrease when the WBT density increases

 Fig 2 b2, b4, d2, and d4 and Table 1 CC and LE). In summary, WBT

ensity modulates the graph-theoretical network properties and results

n similar tendencies at the group level through varying WBT density

or both atlases. In particular, the clustering coefficient and the local

fficiency are significantly different across the WBT conditions already

etween 2M and 10M cases ( Table 1 CC and LE), where very high sim-

larities of SC can be observed ( Fig 2 a1 and c1). 

.2. Impacts of WBT density on model fitting 

Figure 3 shows the obtained parameter planes and the distributions

f the optimal model parameters over all subjects and simulated condi-

ions for the two fitting modalities (sFC versus eFC and sFC versus eSC).

he goodness-of-fit between sFC and eFC was observed for small delays

or both atlases. This is illustrated in Fig 3 a-d, where the red dots de-

icting large similarity values are concentrated on the left side of the

arameter plane demonstrating, however, different cluster shapes for

he Schaefer and the Harvard-Oxford atlases. We also note here that the

atter atlas could lead to a stronger fit between the sFC and eFC, compare

ig 3 a and c. In contrast, in the case of the structure-functional model

tting between sFC and eSC ( Fig 3 e-h), both atlases demonstrate a sim-

lar range of the correspondence (correlation) between simulated and

mpirical data, however, the maximal similarity can also be attained

or large delay. 

During the model validation for individual subjects under the 12

onsidered conditions (6 WBTs × 2 atlases), we also searched for the

ptimal model parameter, where the maximal similarity between sFC

nd empirical data (eFC and eSC) was achieved. The distributions of

uch optimal parameters are depicted in Fig 3 b, d, f, and h for the two

tting modalities and the two brain atlases. In agreement with these re-

ults, the best fit between sFC and eFC is attained for small delays ( Fig 3

 and d), whereas the strongest structure-function correspondence be-

ween sFC and eSC can also be observed for large delays ( Fig 3 f and h).
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Fig. 2. Impact of the WBT density on the structural architecture. Network measures of the structural connectome and similarity between them calculated for 

different WBT densities (numbers of streamlines) for (a, b) the Schaefer atlas and (c, d) the Harvard-Oxford atlas. (a, c) Similarity of the connectivity matrices 

(a1, c1) SC and (a2, c2) PL calculated for different tractography densities by Pearson correlation across all subjects. (b, d) Variations of the network properties 

calculated from the normalized SC matrix versus WBT density. The plot indices stand for 1: average weighted node degree, 2: average clustering coefficient, 3: 

average betweenness centrality, 4: average local efficiency, 5: global efficiency, and 6: modularity as indicated in the plot titles. In each plot the thin gray lines depict 

the behavior of the illustrated quantities for individual subjects together with the box plots, where the red lines, blue boxes and red pluses indicate the medians, the 

interquartile ranges, and the outliers, respectively. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of 

this article.) 

6 
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Fig. 3. Parameter planes and the distributions of the optimal model parameters ( 𝐶, 𝜏) for the two model fitting modalities between simulated and empirical 

data. Parameter planes are averaged (1–3) over all subjects (n = 351) separately for simulation conditions (10K, 500K, and 10M WBT densities) as indicated in 

the plots (see supplementary Fig. A10 for all conditions). The correspondence between the simulated and empirical data was calculated between (a-d) simulated 

FC and empirical FC and (e-h) simulated FC and empirical SC for (a, b, e, f) the Schaefer atlas and (c, d, g, h) the Harvard-Oxford atlas. The Pearson correlation 

between the connectivity matrices is depicted by color ranging from small (blue) to large (red) values. (b, d, f, h) Distributions of the optimal model parameters of 

the best model fitting calculated for all individual subjects and simulation conditions. (For interpretation of the references to colour in this figure legend, the reader 

is referred to the web version of this article.) 

7 
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Fig. 4. Results of the model fitting to the empirical data versus 12 simulation conditions (6 WBTs ×2 atlases). The distributions of the maximal similarities 

for individual subjects between (a) simulated FC and empirical FC and (b) simulated FC and empirical SC are shown as violin plots for 12 conditions of the WBT 

streamline numbers indicated on the horizontal axes for the Schaefer atlas (blue violins) and the Harvard-Oxford atlas (orange violins). The results of the pairwise 

comparisons between the conditions (Wilcoxon signed rank one-tail test) are also indicated with the corresponding p-values in the cases of statistically significant 

differences (Bonferroni corrected 𝑝 < . 05 ). For the box plots the red lines, blue boxes and red pluses indicate the medians, the interquartile ranges, and the outliers, 

respectively. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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n the latter case, the parameter distributions apparently demonstrate a

wo-cluster shape of small and large delays, which is addressed in detail

elow. 

Together with the optimal model parameters for individual subjects,

e also collected the corresponding maximal similarities between the

imulated and empirical data, which are illustrated in Fig 4 for the 12

imulated conditions and for the two fitting modalities of the correspon-

ence between sFC and eFC ( Fig 4 a) and between sFC and eSC ( Fig 4 b).

esults of the functional model fitting in all conditions ( Fig 4 a) were

ot from the normal distributions, where the null hypothesis was re-

ected by 𝜒2 goodness of fit test with 𝑝 < . 05 . Also in the case of the

tructure-functional model fitting ( Fig 4 b) many conditions were not

rom the normal distributions. Therefore, Kruskal-Wallis test was used

or testing significant difference in all conditions (across tractography

ensities). Consequently, we performed Wilcoxon signed rank one-tail

est to evaluate whether the maximal similarities between the simulated

nd empirical data for one condition are significantly higher or lower

han those for the other conditions (see 𝑝 values in Fig 4 ). 

For the functional model fitting (sFC versus eFC) and the Schaefer at-

as ( Fig 4 a, blue violins), the models with 2M and 10M WBTs performed

etter than with the other WBTs, and the performance of the model de-

reased when the number of streamlines decreased. On the other hand,

he functional model fitting for the Harvard-Oxford atlas revealed the
 o  

8 
ptimal condition at 50K or 100K WBT ( Fig 4 a, orange violins). Fur-

hermore, the model could fit better to eFC for the Harvard-Oxford atlas,

hich was also observed in Fig 3 . For the structure-functional model fit-

ing (sFC versus eSC), the situation is different, where 2M or 10M WBTs

re preferable for the strongest correspondence between the simulated

nd empirical data for both atlases demonstrating approximately similar

xtent of the maximal model fitting ( Fig 4 b, see also Fig 3 ). 

.3. Relationships between network properties and the functional model 

tting 

As discussed above, the WBT density modulates the structural con-

ectome. Consequently, it can also influence the dynamics of the model

 Figs 3 and 4 ). In this section, we investigate the effects of the graph-

heoretical network properties modulated by WBT density on the model

erformance. 

For each of the considered 6 network properties, we tested the re-

ationships between their values and the maximal similarity between

FC and eFC as given by the Pearson correlation across 6 WBT con-

itions for each individual subject. The considered network properties

emonstrate a pronounced agreement with the goodness-of-fit values at

he level of individual subjects ( Fig 5 a1 and b1). Some distributions

f the correlation coefficients are significantly shifted from zero except
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Fig. 5. Relationships between the network properties and the results of the functional model fitting. Correlation between the network properties and maximal 

similarity between sFC and eFC for individual subjects and fitting results for stratified subjects are shown for (a) the Schaefer atlas and (b) the Harvard-Oxford atlas. 

(a1, b1) Distributions of the Pearson correlation coefficients calculated across 6 WBT conditions for individual subjects between a given network property indicated 

on the horizontal axes and the goodness-of-fit values. The gray dots represent the values for individual subjects, and the box plots illustrate the medians (red lines), 

the interquartile ranges (blue boxes) and the outliers (red pluses). The asterisks on the x-axes indicate statistically significant differences in the goodness-of-fit values 

between the two subgroups of subjects with positive and negative correlations ( 𝑝 < . 05 of two-sample one-tail t -test). (a2, b2) The results of the functional model 

fitting versus different numbers of the WBT streamlines for the two subject subgroups of pattern 1 and pattern 2 as indicated in the legends based on the statistically 

significant split of the subjects for the network properties marked by asterisks in plots a1 and b1, see the Methods Section 2.3.1 for details. The error bars indicate 

the standard error, and the asterisks denote the simulation conditions, where the pattern 1 and 2 exhibit significantly different extend of the similarity between 

simulated and empirical data. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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or Avg. WD, S.D. BC, and GE for the Schaefer atlas and S.D. BC for

he Harvard-Oxford atlas (see Fig 5 for abbreviations). The presented

esults are reproducible to retest over individual 5 sessions (4 fMRI ses-

ions and the concatenated case) and merged data of the goodness-of-fit

alues (see supplementary Fig. A2). Based on the results illustrated in

ig 5 a1 and b1 and supplementary Fig. A2, we can conclude that the

hanges in the model performance for the individual subjects are related

o the changes in the network properties across different WBTs. 

The distributions of the correlation coefficients between the network

roperties and the goodness-of-fit values may differ for different atlases

 Fig 5 a1 and b1) indicating a complex relationship between the struc-

ural connectome and modeling results. To address such relationships in

ore detail, we split the subjects into two subgroups of positive or nega-

ive correlation for every considered network metric. Then we intersect

he groups with highest goodness-of-fit for the network metrics marked

y asterisks in Fig 5 a1 and b1 with significant difference between the

ubgroups and stratify the subjects into two patterns as explained in

ethods ( Section 2.3.1 , see also Figs. A3 - A5 in Supplementary mate-

ials). 

Based on the results of the tests, for the Schaefer atlas, we selected

ubjects exhibiting positive correlation with the standard deviation of

eighted node degree (S.D. WD+) and negative correlation with the

verage betweenness centrality (Avg. BC-) for pattern 1, which have sig-

ificantly higher values of the goodness-of-fit of the model than those of

he complementing subgroups (S.D. WD- and Avg. BC+), respectively.

he intersection of the two selected subgroups, i.e., S.D. WD+ (n = 93)

Avg. BC- (n = 329) = 82, constituted the stratified pattern 1, whereas

he rest of the subjects (n = 269) were grouped into pattern 2. 

We found that the two patterns of the split subjects subgroups

emonstrate significantly different quality of the goodness-of-fit of the

odel depending on the WBT conditions ( Fig 5 a2). For statistical test-
9 
ng of the differences between the patterns 1 and 2, 𝜒2 goodness of fit

est was used to test for a normal distribution for each condition of pat-

ern 1 and pattern 2. The Wilcoxon rank sum one-tail test was then used

or a non-parametric test of the difference between the patterns if the

ull-hypothesis for a normal distribution was rejected by the 𝜒2 test.

therwise, two-sample one-tail t -test was used for comparing normal

istributions of pattern 1 and pattern 2. The significant differences be-

ween the patterns are indicated by asterisks in Fig 5 a2, which is the case

or any WBT density. We also found that the fitting values for both pat-

erns 1 and 2 monotonically increase for higher WBT density ( Fig 5 a2).

n addition, we tested the changes of the goodness-of-fit of the model

or each pattern when the WBT density varies by using Wilcoxon signed

ank test. As a result, for the Schaefer atlas, 500K or more streamlines

f the pattern 1 and 2M or more streamlines of the pattern 2 showed

ignificantly higher goodness-of-fit values than for any sparser WBT con-

itions. 

For stratification for the Harvard-Oxford atlas, we selected subjects

rom the intersection of the following subgroups derived as above of pos-

tive and negative correlations with the network metrics, which showed

ignificantly higher goodness-of-fit values than the complementing sub-

roups: Avg. CC-, S.D. CC-, Avg. BC-, Avg. LE-, S.D. LE-, GE+, and MQ+

see Fig 5 for abbreviations). As above, the sign “+ ” or “- ” after the

roperty name indicates the corresponding subgroups of subjects ex-

ibiting positive or negative correlations with the considered network

roperties, respectively. Such an intersection of the subgroups resulted

n a stratified pattern 1 containing 173 subjects complemented by the

thers, i.e., 178 subjects of pattern 2. 

We here found that patterns 1 and 2 exhibit different behavior of

he goodness-of-fit values when the WBT density varies ( Fig 5 b2). Pat-

ern 1 monotonically increases for large WBT density as before, whereas

attern 2 apparently demonstrates a non-monotonic behavior with an
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Fig. 6. Clusters of the optimal model parameters of the maximal similarity between simulated FC and empirical SC. The optimal parameters for (a) the 

Schaefer atlas and (b) the Harvard-Oxford atlas from Fig 3 f and h, respectively, (n = 2106 values for 351 subjects and 6 WBTs) were split into two subgroups 

as illustrated in the two lower plots, where the one- and two-dimensional distributions of the optimal parameters are depicted. The upper plots with error bars 

show the maximal similarity of the functional model fitting between simulated FC and empirical FC of the concatenated fMRI session for the subjects from the two 

clusters versus the number of the WBT streamlines. The alluvial plots to the right schematically illustrate the interchange of the cluster members when the number 

of streamlines varies from 10M to 10K. The white numbers in each WBT step indicate the number of subjects in the clusters. 
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ptimal point at 50K of the WBT streamlines. Statistical testing with

ilcoxon signed rank test demonstrated that 100K or more streamlines

f pattern 1 showed significantly higher goodness-of-fit values than any

parser WBT condition. However, 50K streamlines of pattern 2 is the op-

imal condition that shows significantly higher correspondence between

he simulated and empirical data than for any other condition, sparser

f denser WBT. 

Based on the presented results, we can conclude that the optimal

umber of the WBT streamlines should be considered large ( ∼500K-

0M) for the Schaefer atlas ( Fig 5 a2). Interestingly, the best goodness-

f-fit of the model for the Harvard-Oxford atlas can be reached for

uch sparser WBT at ∼50K streamlines for more than 50% of subjects

 Fig 5 b2). 

.4. Effects of time delay on model validation 

Based on the clustered distributions of the optimal model parame-

ers of the maximal structure-functional similarity between sFC and eSC

 Fig 3 f and h), we divided the optimal parameter points and the corre-

ponding subjects into two clusters ( Fig 6 ). In such a way, the cluster of

arameter points with small delay (cluster 1) was split from the other

oints characterized by relatively large delay (cluster 2) based on their

imodal distributions ( Fig 6 , the red dotted lines in the histograms in

he bottom plots). By dividing the subjects into the two subgroups corre-

ponding to the above clustering of their optimal parameters, we found

hat the goodness-of-fit values of the functional model fitting are signifi-

antly higher in cluster 2 than in cluster 1 consistently for all simulation

onditions (all WBTs and both atlases), see Fig 6 (upper plots). Similar

ffects can also be observed for the structure-functional model fitting be-

ween sFC and eSC (see Fig. A6 a2 and b2 in Supplementary materials).

he time delay in coupling thus played a constructive role in the model

alidation against empirical data and led to a better correspondence for

tructure-functional as well as functional model fitting. 
10 
These results also establish a connection between the two fitting

odalities and the time delay, where the impact of the latter was not

bserved in the distributions of the optimal parameters of the functional

imilarity between sFC and eFC ( Fig 3 b and d) and can only be revealed

y mediation of the structure-functional correspondence. Another corre-

pondence can be established between the values of the optimal global

elays and the natural frequencies of the phase oscillators ( Eq 1 ). To

valuate such a dependence, the broadly distributed positive global de-

ays in cluster 2 were correlated with the mean natural frequencies ⟨𝑓 𝑖 ⟩
veraged over all oscillators ( Eq 1 ). The mean natural frequency of the

odel is also varying across subjects, and we found a well-pronounced

egative correlation between the mean natural frequencies and the opti-

al delays for the maximal structure-functional similarity between sFC

nd eSC (see Figs. A7 and A8 in Supplementary materials). This indicates

hat subjects with slow BOLD oscillations are modeled by system ( Eq 1 )

ith large optimal delay if the best correspondence between structure

nd function has to be achieved. 

When the number of the WBT streamlines varies, subjects may ex-

hange their membership in the two clusters ( Fig 6 , the vertical alluvial

lots). Interestingly, for the Schaefer atlas, the ratio of subjects in the

wo clusters is gradually changing when WBT is getting sparser (from

0M to 10K), where more and more subjects move to cluster 1 approx-

mately balancing the subgroup sizes at 10K case ( Fig 6 a, the alluvial

lot). In contrast, there are only small exchanges of the subjects between

lusters for the Harvard-Oxford atlas keeping the group sizes approxi-

ately constant for all WBT conditions ( Fig 6 b, the alluvial plot). Cluster

 contains most of the subjects as is for both atlases for the case of 10M

f the WBT streamlines. We used the splitting of the subjects into the

iscussed two clusters as the second criterion of the stratification anal-

sis. 

It is also important to observe that the structure-functional corre-

pondence between the empirical connectomes eFC and eSC exhibited

eak opposite relationships between parameter clusters and across the
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Fig. 7. Subject stratification according to the model performance across 6 WBTs. (a, b) Goodness-of-fit values of the functional correspondence between 

simulated FC and empirical FC for (a) the Schaefer atlas and (b) the Harvard-Oxford atlas and for the two groups of the subjects stratified according to the third 

criterion (see Methods Section 2.3.3 ). The latter is based on the behavior (positive/negative slopes) of the maximal similarity versus the WBT conditions (see text 

for details) as indicated in the legends, where the number of subjects in each group is also pointed out. The asterisks indicate the statistically significant differences 

between the two subject groups ( 𝑝 < . 05 , two-sample one-tail t -test for normal distributions and Wilcoxon rank sum one-tail test for non-parametric test). 
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umber of the WBT streamlines as compared to the correspondence be-

ween simulated and empirical data (see Fig. A6 a1 and b1 in Supple-

entary materials). This indicates a nontrivial character of the reported

esults that do not directly follow from the empirical structure-function

orrespondence. 

.5. WBT-Induced changes of model performance 

In the previous sections, we observed that the behavior of the

oodness-of-fit values versus the WBT conditions is not akin to that of

he other atlas. We, therefore, explicitly searched for such divergent dy-

amics and looked for the subjects with the best model performance

or the most sparse or the most dense WBT. The subjects are then split

nto two subgroups based on the opposite behavior of the model per-

ormance when the number of WBT streamlines varies, see Methods

 Section 2.3.3 ) for detail. Figure 7 illustrates the different dynamics of

he goodness-of-fit values of the two subgroups of subjects for the two

tlases. 

As reported before, the maximal similarity between sFC and eFC

onotonically increases for the Schaefer atlas when the WBT is getting

enser ( Figs. 4 - 6 ). We thus explicitly searched for such conditions, i.e.,

hen the goodness-of-fit was larger for 10M case than for 10K case, and

he corresponding line of the model performance had a positive slope.

e found that the subjects split very unevenly according to such crite-

ion, and most of them (n = 339) exhibited positive slope, where the sim-

larity between simulated and empirical data monotonically increases

hen the number of streamlines increases ( Fig 7 a). Each split subgroup

as tested for a normal distribution by 𝜒2 goodness of fit test over WBT

ensities. The null hypothesis of the 𝜒2 test was rejected for each sub-

roup and each condition. Therefore, we performed Wilcoxon signed

ank test. As a result, for the subject subgroup with the positive slope

he case of 2M or more WBT streamlines showed significantly higher

oodness-of-fit of the model than any sparser WBT condition ( Fig 7 a,

ed curve). 

In the case of the Harvard-Oxford atlas, the goodness-of-fit values

ay exhibit a non-monotonic behavior and attained the maximal values

t 50K WBTs ( Figs. 4 and 5 ). After stratification according to the third

riterion, the both subgroups contain large fractions of the entire subject

opulation with the positive slope (n = 248) and the negative slope (n

 103) ( Fig 7 b). For the statistic analysis, the null hypothesis of the 𝜒2 

est was not rejected, and we thus performed the two-sample paired t -

est. The test resulted in the subgroup with the positive slope showed

ignificantly higher goodness-of-fit of the model with 100K or more WBT
11 
treamlines than any sparser WBT condition ( Fig 7 b, red curve). On the

ther hand, the subgroup with the negative slope showed significantly

igher goodness-of-fit of the model with 50K or less WBT streamlines

han any denser WBT condition ( Fig 7 b, blue curve). 

.6. Stratification analysis 

As investigated in the previous sections, the entire subject popula-

ion can first be split into two groups based on the two patterns of the

elationships between network properties and the functional model per-

ormance ( Fig 5 ). Second, the subjects can be split based on the clus-

ered distribution of the optimal parameters of the structure-functional

aximal similarity between sFC and eSC ( Fig 6 ). Third, different be-

avior of the goodness-of-fit values of the best correspondence between

FC and eFC can result in positive and negative slopes versus the WBT

onditions, which can also be used for subject stratification ( Fig 7 ). By

ombining all three approaches, we illustrated stratification results in

he alluvial plots in Fig 8 . Here the proportions of the stratified subjects

re shown when the above stratifying criteria are consequently applied

o the entire subject population for each atlas. The stratified subjects

how different extent and behavior of the goodness-of-fit values of the

unctional model fitting over the WBT conditions ( Fig 8 ). 

In the case of the Schaefer atlas, according to the first criterion, we

an expect that subjects of pattern 1 form a relatively small fraction

23%) of the entire subject population, but they have shown higher

oodness-of-fit ( Fig 5 a2 and Fig 8 a2). The second stratification step in

ig 8 reflects the interchanging behavior between the parameter clusters

bserved in Fig 6 a. In particular, the stratified group 3 (parameter clus-

er 2 of large delay) show better performance than the stratified group 2.

inally, the third criterion practically does not differentiate the subjects

nto positive and negative slopes, see also Fig 7 . The declining curves of

he goodness-of-fit when the number of the WBT streamlines decreases

mply that the optimal number of the total streamlines for the simula-

ion should be considered large, for example, more than 500K: 2M or

0M of the WBT streamlines ( Fig 8 a2). 

For the Harvard-Oxford atlas, subjects stratified into pattern 1 by

he first criterion show a monotonic increment of the goodness-of-fit

or dense WBT as expected ( Fig 8 b2, see also Fig 5 b2). In addition, we

an also expect that the subjects from pattern 2 will have the maximal

odel performance for sparse WBTs ( Fig 5 b2 and Fig 8 b2). In the second

tratification step, the overwhelming majority of subjects from pattern

 were sorted to the group of persistent members of cluster 2, i.e., the

ubgroup with large delay for the best structure-functional model fitting



K. Jung, S.B. Eickhoff and O.V. Popovych NeuroImage 237 (2021) 118176 

Fig. 8. Stratification analysis with three criteria for two atlases. (a1) The alluvial plot shows all stratified subjects via three criteria and (a2) the bottom plot 

shows goodness-of-fits through 6 WBT conditions for large stratified groups ( > 35) in the case of the Schaefer atlas. (b) The plots by the same analyses for the 

Harvard-Oxford atlas. 
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 Fig 8 b1, see also Fig 6 ). Finally, the subjects in pattern 2 can still be split

nto two subgroups with the inclining and the declining curves of the

oodness-of-fit values by the third criterion ( Fig 8 b2, stratified groups 2

nd 3). This can further refine the differentiation of subjects of the best

odel performance at sparse WBT density (see also Fig 7 ). 

The model evaluation with the Harvard-Oxford atlas shows different

ptimal conditions than that for the Schaefer atlas ( Fig 8 b2). The opti-

al streamline number may depend on the stratification subgroups to

hich the subject belongs, and which exhibited very different behavior

f the goodness-of-fit when the number of streamlines varied ( Fig 8 b2).

or example, the optimal number of streamlines for a better model per-

ormance could range from 10M to 100K for the subjects from subgroup

 in Fig 8 b2 (solid red curve). On the other hand, for more than 20%

f subjects (n = 80) of the entire subject population, i.e., for those from

he stratified group 3 ( Fig 8 b2, dashed blue curve), the optimal condi-

ions are at ∼50K WBT streamlines, and more streamlines may lead to

he degradation of the quality of the model validation. For other 18%

f subjects (n = 66, group 3 in Fig 8 b2, solid blue curve) a sparse WBT

an also be a reasonable option. 

. Discussion 

The purpose of the current study was to explore how the process-

ng of the neuroimaging data can influence the dynamics and valida-

ion of the whole-brain mathematical dynamical models informed by the

mpirical data. We considered several simulation conditions based on

arying data processing parameters, such as the number of total stream-

ines of WBT and brain atlases. While the latter defined how the brain

s parceled into several brain regions that are considered as network

odes in the model, the former influenced the underlying SC (stream-
12 
ine counts) and PL (streamline path lengths) used for the calculation of

he coupling weights and time delays in the coupling between nodes.

 straightforward interpretation of the investigated number of WBT

treamlines as a count of anatomical fiber bundles should be made with

aution which was extensively discussed by Jones et al. (2013) . Instead,

he reconstructed streamlines can be considered as a good guess of the

hite matter connectivity ( Caminiti et al., 2013; Jones et al., 2013; Ver-

ani et al., 2014 ). We discussed how the WBT density can influence the

tructural information fed to the model and the corresponding model-

ng results for the considered brain atlases. We found that the parcella-

ion with different atlases showed similar changes of the architecture of

he structural networks, but distinct trends of the goodness-of-fit of the

odel to the empirical data across the number of WBT streamlines. Con-

equently, we suggested optimal configurations of the considered data

nd model parameters for the best model fit at the group level as well as

or personalized models of individual subjects based on the properties

f the empirical and simulated data. 

The applied model-based approach followed the line of research sug-

ested and developed in many modeling studies, see, for example, the

apers ( Breakspear et al., 2010; Cabral et al., 2011; Deco et al., 2017;

ukushima and Sporns, 2018; Honey et al., 2009; Ponce-Alvarez et al.,

015; Popovych et al., 2019 ) and references therein. The potential of

he whole-brain dynamical models to explain the properties of the brain

ynamics and structure-function relationship was demonstrated by a de-

ailed investigation of the correspondence between empirical and simu-

ated brain connectomes. At this, the connectivity patterns of the under-

ying structural network as related to the inter-node coupling strengths

nd delays can play a crucial role for observing a pronounced structure-

unction agreement ( Popovych et al., 2011; Ton et al., 2014 ). It is thus

mportant to extract the empirical SC and PL used for evaluation of pa-
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ameters of the model connectivity as plausible as possible in order to

btain biologically realistic modeling results ( Knock et al., 2009 ). With

his respect, the structure-functional model fitting can be higher than

he functional goodness-of-fit as we observed in the current study. One

ossible explanation might be related to that the empirical SC serves as

he underlying backbone of the whole-brain modeling, and simulated FC

enerated by such models may better replicate the underlying network

tructure than empirical FC. However, additional investigation is neces-

ary to clarify this question. The current study focuses on the impact of

ractography density on the modeling. 

.1. Evaluating structural architecture for modeling 

Within the framework of the modeling approach, the model parame-

ers can be varied in a broad range and sense to evaluate their impact on

he simulated dynamics. As related to the discussed network topology,

eyond the variation of the global coupling strength, the network edges

pproximating the anatomical connections between brain regions can

e removed to obtain a better fit between simulated and empirical FC

 Cabral et al., 2012 ). Aiming at the best correspondence between simu-

ated and empirical data, new inter-region anatomical connections were

llowed to be created, or existing structural connections to be rewired

ccording to algorithms based on the differences between the simulated

nd empirical FC including the gradient-descent method ( Deco et al.,

019; 2014 ). The model connectivity can be composed of both empiri-

al SC extracted from dwMRI data and local intra-cortical connections

ncorporated into the model based on the distance-dependent approxi-

ations ( Proix et al., 2016 ). 

Among many possible ways of SC variation for the best model fit-

ing, which might also require additional justifications, we propose to

tay within the framework of realistically extracted signals from dwMRI

ata and consider the well-established approaches for the data process-

ng. In this study, we used state-of-the-art techniques for calculation of

BT and SC ( Tournier et al., 2019 ) and investigated the impact of a

onstructive parameter for the structural connectome, the number of

xtracted streamlines on graph-theoretical measures of SC, and their in-

uence on the modeling results. 

As discussed in Fig 2 and Table 1 , the variation of the WBT density

ffects the properties of the model networks calculated from the struc-

ural connectome, especially, the PL matrices, where the edges with rel-

tively small numbers of streamlines are sensitive to reducing the total

umber of tracking trials. Therefore, SC extracted from relatively sparse

BT with small number of streamlines may not guarantee a higher re-

roducibility with stable network properties, where some edges will be

isconnected or reconnected from time-to-time, when streamlines will

e generated. We, nevertheless, considered an extreme case of 10K WBT

treamlines in this study to illustrate the effects observed for very sparse

BT density. 

.2. Graph-theoretical network properties across conditions 

For the extraction of the brain structural and functional connectomes

nd for setting up the model network, we used two paradigmatically

istinct brain atlases. These are the Schaefer atlas ( Schaefer et al., 2018 )

hat is based on functional MRI data, and the Harvard-Oxford atlas of

natomy-related parcellation ( Desikan et al., 2006 ) that is based on the

andscape of gyri and sulci on the cortical surface. We found that the

raph-theoretical properties of the structural networks built based on

hese two parcellations are changing with similar tendencies across the

onsidered WBT conditions for both atlases ( Fig 2 and Table 1 ). 

Some of the considered network properties exhibit high sensitivity

o the variations of the WBT density, for example, the clustering coeffi-

ient (CC) or the local efficiency (LE), see Table 1 . On the other hand,

he weighted node degree (WD) or the global efficiency (GE) manifested

ignificant changes only when the number of the calculated WBT stream-

ines was decreased from 10M to 100K or 50K, i.e., 100–200 times.
13 
he sensitivity was stronger for the Schaefer atlas. These findings might

e of importance when the discussed network properties influence the

odeling results. We also found that the mentioned network metrics

CC and LE) with sensitive dependence on the WBT density strongly

nti-correlate with the goodness-of-fit of the model for the Schaefer at-

as ( Fig 5 a1), while the dependence is weak with insensitive network

easures (WD and GE). Given the impact of the WBT density on the

roperties of the structural networks ( Fig 2 ), this may explain the clear

onotonic behavior of the goodness-of-fit for the Schaefer atlas versus

he number of streamlines ( Fig 5 a2). The situation is different for the

arvard-Oxford atlas, where the relationship with CC and LE is in aver-

ge less pronounced, whereas the correlation with WD and GE is more

nhanced ( Fig 5 b1). This may explain the apparently mixed behavior of

he goodness-of-fit for this brain atlas ( Fig 5 b2). 

In summary, some of the network metrics are characterized by differ-

nt relationships with the results of the model validation for the varying

BT density for different parcellations, see also supplementary Figs. A3

nd A4 for the relationships of all considered network properties. There-

ore, even if the tractography density modulates the graph-theoretical

etwork properties in similar changes for the considered atlases as we

bserved, it can however influence the dynamics of mathematical mod-

ls in different ways depending on the used brain parcellation. 

.3. Role of time delay in the modeling 

It is interesting to note here that the best agreement between sim-

lated and empirical functional data (sFC and eFC) was attained for

he considered model at small (zero) delays ( Fig 3 ). It is therefore safe

o consider such a type of model simulating ultra slow BOLD dynam-

cs without delay in coupling ( Deco et al., 2019; 2017; Ponce-Alvarez

t al., 2015 ). Nevertheless, the goodness-of-fit for the model with de-

ay (including zero delay) exhibits around 9% larger values than that

ithout delay (zero delay only), see Fig. A9 a and b in Supplementary

aterials. On the other hand, the role of delay in coupling is apparent

or the structure-functional (sFC-eSC) model fitting, where the corre-

pondence between sFC and eSC is also enhanced by around 14% for

he model with delay when compared to the case without delay (Fig.

9 c and d in Supplementary materials). 

We also reported on the clustered distributions of the optimal model

arameters for the structure-functional model fitting sFC-eSC and their

ehavior (migration between clusters) when the WBT density varies for

he two considered brain atlases ( Fig 6 ). Such a behavior of the opti-

al parameters might be related to the performance of the model at

he group level. Indeed, we observed that subjects from the parameter

luster with large delay demonstrated better quality of the model vali-

ation for both functional and structure-functional model fittings ( Fig 6

nd supplementary Fig. A6). In other words, if the optimal parameters

or the maximal sFC-eSC correspondence have a large delay, we might

xpect a better correspondence between sFC and eFC. Accordingly, we

ight also expect that the group-averaged goodness-of-fit for the Schae-

er atlas will decay faster than that for the Harvard-Oxford atlas when

he number of streamlines decreases as observed in Fig 4 . This is be-

ause parameter points (subjects) migrate to the cluster with small de-

ay, and fewer optimal parameter points with large delay can be found

or a sparser WBT for the Schaefer atlas. These arguments can suggest a

ossible mechanism associated with the impact of time delay in coupling

n the model fitting results. 

The values of the optimal non-zero delays for the structure-functional

tting modality can be influenced by the natural frequencies of oscilla-

ors ( Eq 1 ) demonstrating relatively strong negative correlations with

he structure-functional model fitting as illustrated in supplementary

igs. A7 and A8. Therefore, the average frequency of BOLD oscillation

or a given subject can influence the values of the optimal delay for the

est structure-functional correspondence. The parameter of the global

elay scales the average velocity of signal propagation between brain re-

ions. Consequently, the optimal speed of the signal propagation in the
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rain as revealed by the modeling results can be regulated by the mean

ntrinsic time scale of oscillatory activity of individual brain regions. 

.4. Stratification analysis and optimal conditions 

The problem of the optimal number of the total WBT streamlines was

lso addressed in this study beyond the group-level analysis and aimed

t the best fitting of the personalized models for individual subjects. To

nvestigate the impact of the WBT density at the level of individual sub-

ects, we stratified the entire subject population into smaller subgroups

ith more homogeneous (heterogeneous) model dynamics within (be-

ween) subgroups. One of the stratification approaches is to show the ef-

ect of the graph-theoretical network properties modulated by the WBT

ensity on performance of the model. We found that such correlations

or individual subjects are well-pronounced for the Schaefer atlas, but

hey are somewhat less expressed for the Harvard-Oxford atlas ( Fig 5 a1

nd b1). Nevertheless, the stratification can be designed by combining

he splitting results for different network properties, which resulted in

 clear differentiation of the impact of the WBT streamline number on

he model validation across stratified subgroups and brain parcellations

 Fig 5 ). 

Another approach to stratification of the subjects was based on the

lustering of the optimal delay for the structure-functional model fit-

ing discussed above. It can provide an informed view on the validation

esults for the functional model fitting ( Fig 6 ). One more stratification

pproach is illustrated in Fig 7 , where the subjects were split into two

ubgroups of qualitatively different individual behavior of the goodness-

f-fit versus the streamline number. Based on the obtained results, we

an propose to use the large number ( ∼2M-10M) of the WBT streamlines

or the best functional model validation, if the Schaefer atlas was used

or the brain parcellation. 

On the other hand, the recommendation is completely opposite for

ore than 20% of subjects for the brain parcellation based on the

arvard-Oxford atlas ( Fig 8 b2, blue dashed curve 3). For such sub-

ects, the large number of streamlines can lead to a lower quality of

he model fitting as compared to rather sparse WBT containing, for ex-

mple, only 50K streamlines. Differentiating the subjects according to

he discussed stratification criteria can help to design an individual data

rocessing workflow and configurations of parameters for the optimal

ersonalized modeling of the brain dynamics. In particular, based on

he obtained results, we can suggest a personalized optimal number of

he WBT streamlines for the considered brain parcellation for the better

odel performance at the modeling of the resting-state brain dynamics.

Based on the results of the stratification analysis, we may suggest a

ew tentative guidelines to possible evaluation of personalized optimal

umber of the WBT streamlines for the whole-brain model of the resting-

tate brain dynamics. 

• Around 50K WBT streamlines can be considered as a sparse WBT

condition. 
• More than 2M WBT streamlines can be considered as a dense WBT

condition. 
• Graph-theoretical network properties of the structural connectome

can influence the goodness-of-fit of the model over different tractog-

raphy densities. Such relationships to the data variables may con-

tribute to the mechanism of the fitting variability and subject strat-

ification into qualitatively different subgroups. 
• Modeling with time delay in coupling can enhance goodness-of-fit

of the model. 
• A dense WBT is not always the best condition for the whole-brain

modeling. 
• Brain parcellation may affect the optimal parameters of the data pro-

cessing and should be taken into account already at early stages of

the data analytics. 

To understand the underlying mechanism of the stratification results,

ore detailed investigation aimed at quantitative validations and gen-
14 
ralization of the results should be performed. From the results of the

urrent study we can already conclude that optimal configurations of

he data processing and quantitative guidelines are important for per-

onalized data processing and modeling. 

.5. Limitations and future direction 

Although we used the data with high quality of the data pre-

rocessing and physiological noise reduction, however, we note that

he reported results were obtained from the neuroimaging data of young

dults with relatively narrow age ranges. In order to generalize our con-

lusions, they have to be verified for other datasets with broader dis-

ribution of the phenotypic parameters and other data quality such as

linical-grade scans. 

The current study used empirical FC based on the resting-state

MRI measurements for evaluation of the model performance. Regard-

ng other data modalities, future works can include electrophysiological

ata with electrical modeling for general outcomes. Furthermore, other

tting modalities can also be possible metrics to evaluate whole-brain

odeling, for instance, dynamic FC or effective connectivity. Detailed

nvestigation under such conditions can contribute to a better coverage

nd optimization of the model validation for personalized modeling. 

. Summary and conclusion 

We found that varying number of total streamlines for WBT affects

he network properties of the structural connectome and performance

f the mathematical modeling of the resting-state brain dynamics. The

esults showed that a dense WBT is not always the best condition for

he whole-brain mathematical modeling represented by a system of in-

eracting oscillators with time delay in coupling. We also demonstrated

hat the optimal parameters of the data processing may be affected by

he utilized brain parcellation that should be taken into account already

t early steps of the data processing workflow. The present study did

ot aim to provide any quantitative conclusion concerning the optimal

umber of WBT streamlines, but rather to illustrate possible qualitative

ffects caused by the varying WBT density on the structural connectome

nd modeling results in combination with functional and anatomical

rain parcellations. Our results can contribute to a better understand-

ng of the interplay between the data processing and model parameters

nd their influence on data analytics of dwMRI and modeling of the

esting-state fMRI data. 
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