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Dynamical modeling of the resting-state brain dynamics essentially relies on the empirical neuroimaging data uti-
lized for the model derivation and validation. There is however still no standardized data processing for magnetic
resonance imaging pipelines and the structural and functional connectomes involved in the models. In this study,
we thus address how the parameters of diffusion-weighted data processing for structural connectivity (SC) can
influence the validation results of the whole-brain mathematical models informed by SC. For this, we introduce
a set of simulation conditions including the varying number of total streamlines of the whole-brain tractography
(WBT) used for extraction of SC, cortical parcellations based on functional and anatomical brain properties and
distinct model fitting modalities. The main objective of this study is to explore how the quality of the model
validation can vary across the considered simulation conditions. We observed that the graph-theoretical network
properties of structural connectome can be affected by varying tractography density and strongly relate to the
model performance. We also found that the optimal number of the total streamlines of WBT can vary for differ-
ent brain atlases. Consequently, we suggest a way how to improve the model performance based on the network
properties and the optimal parameter configurations from multiple WBT conditions. Furthermore, the population
of subjects can be stratified into subgroups with divergent behaviors induced by the varying WBT density such
that different recommendations can be made with respect to the data processing for individual subjects and brain

parcellations.

1. Introduction

Some 15 years ago, the human brain connectome was introduced to
understand functional brain states which are emerged by structural ar-
chitecture (Sporns et al., 2005). Over more than a decade, researchers
have been investigating the human connectome to elucidate the rela-
tionship between structure and function (Goni et al., 2014; van den
Heuvel and Sporns, 2011; Sporns, 2011; Suérez et al., 2020). Recently,
network neuroscience provides integrative perspectives to validate bio-
physically realistic models via structural connectome (Bassett et al.,
2018). However, the lack of ground truth and golden standards for the
calculation of the human connectome caused a central body of ongo-
ing debates in the literature to validate the macroscopic structural and
functional connectivity from neuroimaging data of the human brain
(Lindquist, 2020; Maier-Hein et al., 2017; Parkes et al., 2018). In ad-
dition, no consensus method has been accepted so far as a standardized
approach for calculating the whole-brain connectome (Schilling et al.,
2019; Sotiropoulos and Zalesky, 2019). Many studies have investigated
the effects of the data processing on the obtained results with respect
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to reproducibility with different methodologies for structural architec-
ture (Bassett et al., 2011; Buchanan et al., 2014; Cammoun et al., 2012;
Dennis et al., 2012; Messaritaki et al., 2019; Owen et al., 2013; Roine
et al., 2019), functional homogeneity (Bellec et al., 2015; Thirion et al.,
2014), and cortical resolutions for brain modeling (Proix et al., 2016).
These studies reported good-to-excellent reliability or stable outcome
(Dennis et al., 2012; Owen et al., 2013), recommendation (Messaritaki
et al., 2019; Roine et al., 2019), and limitations (Buchanan et al., 2014).
At this stage, researchers summarized the influence of data processing
for structural brain network measures (Qi et al., 2015). Nevertheless,
most of the used techniques, algorithms and parameters for processing
the neuroimaging data remain at the level of the best practice lacking a
solid theoretical foundation.

Without the ground truth, a model-based approach can be a pos-
sible way to investigate the impact of the data processing on the
observed brain dynamics and reveal the corresponding mechanisms
(Popovych et al., 2019). At this, it is assumed that the considered mathe-
matical models derived from the interactions between brain regions can
closely simulate the dynamics of the brain responses. By comparing the
simulated and empirical data, we can address the model performance
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as given by the results of the model fitting and thoroughly explore the
model parameters and dynamics. Consequently, we can apply the model
validation to evaluate the data processing by searching for the optimal
model parameters that provide the best fitting of the model against the
empirical data (Cabral et al., 2011; Endo et al., 2020; Zimmermann
et al., 2018). Such an evaluation procedure can be repeated for sev-
eral modeling conditions, where the parameters of the data processing
are varied. In this manner, we can systematically approach the optimal
modeling condition and data parameters used for the data processing,
which enhances the agreement between the simulated and empirical
data.

Previous studies have used different whole-brain tractography
(WBT) densities ranging from 5K to 100M tracked streamlines for the
human connectome (Bajada et al., 2019; Hagmann et al., 2008; Honey
et al., 2009; Prasad et al., 2013; Proix et al., 2016; Roine et al., 2019).
In particular, Roine et al. (2019) tested the reproducibility of graph-
theoretical measures across varied streamline densities from 10K to
100M and concluded that tractography density should be sufficiently
high for excellent reproducibility. High tractography density is also ben-
eficial for highlighting subtle clinical differences, and already 15K-20K
streamlines may be sufficient to differentiate between patients with
Alzheimer’s disease or mild cognitive impairment from healthy con-
trols (Prasad et al., 2013). However, the impact of the WBT density
on the human connectome is still unclear. Besides, the derivation of the
whole-brain models essentially relies on the underlying network calcu-
lated from the whole-brain empirical structural connectivity (SC). The
latter provides the brain architecture serving as a backbone for the mod-
eling of brain dynamics (Cabral et al., 2011; Endo et al., 2020; Honey
et al., 2009; Zimmermann et al., 2018). It is however difficult to eval-
uate whether the selected parameters of the data processing for WBT
density (e.g., the number of WBT streamlines) are reliably reflecting the
brain architecture, and what are the optimal values for modeling, e.g.,
for maximal similarity between simulated and empirical data. In this
study, we address the latter problem and search for the optimal config-
urations which could lead to the optimal SC extraction resulting in the
best fit between the simulated and empirical data.

The broad spectrum of the computational models used for simula-
tion of the brain dynamics ranges from the micro- to the macro-scale
(Deco et al., 2008; Endo et al., 2020; Freeman, 1987; Hodgkin and Hux-
ley, 1952; Jansen and Rit, 1995; Wilson and Cowan, 1973). Besides
the sophisticated computational modeling concepts, the responses of
brain regions can be considered as a harmonized signal (Buzsaki, 2011).
Thus, we can also use simple mathematical models of coupled oscilla-
tors to generate oscillating brain activity (Breakspear et al., 2010; Ku-
ramoto, 1984; Rodrigues et al., 2016). In particular, systems of coupled
phase and generic limit-cycle oscillators were suggested by previous
studies for modeling cortical oscillations of the resting-state blood oxy-
gen level-dependent (BOLD) dynamics (Breakspear et al., 2010; Cabral
et al., 2011; Deco and Kringelbach, 2016; Deco et al., 2017; Fukushima
and Sporns, 2018; Ponce-Alvarez et al., 2015). These studies reported
the maximal agreement between simulated and empirical data as given
by the Pearson correlation between simulated and empirical functional
connectivity (FC) in the range between 0.3 and 0.7. In this study, we
consider such a system of coupled phase oscillators to model the slow
oscillations of the resting-state BOLD dynamics.

The main topic of the current study is to investigate the impact of
the WBT streamline number used for calculation of SC and the average
streamline path-length (PL) between brain regions on the simulation re-
sults. We considered a system of coupled phase oscillators with delayed
coupling (Yeung and Strogatz, 1999), where the anatomical information
about brain structural architecture (SC and PL) from diffusion-weighted
MRI (dwMRI) was used for its derivation, i.e., to build the model net-
work and approximate the coupling weights and time delay between the
network nodes. The latter are the brain regions parceled according to a
given brain atlas/brain parcellation. We considered two distinct brain
parcellations based on anatomical and functional brain properties. We

Neurolmage 237 (2021) 118176

systematically explored the model parameter space of two free param-
eters of global coupling and global delay in order to fit the model to
empirical data. We also used two model fitting modalities as given by
1) similarity (Pearson correlation) between simulated and empirical FC
as a goodness-of-fit of the model and 2) similarity between simulated
FC and empirical SC to probe the dynamics of the model as related to its
structural network. The obtained simulation results were compared with
each other across subjects and simulation conditions, which allowed us
to scrutinize the effects of structural architecture modulated by varying
WBT density and brain parcellations on the model validation against
empirical data. The used approach can also lead to a better understand-
ing of the properties of the obtained data influenced by selected data
processing, which can play a key role for the brain modeling as well as
data analytics.

2. Materials and methods

The current study considered 351 wunrelated subjects (172
males, age 28.5 + 3.5 years) from the Human Connectome
Project (HCP) S1200 dataset (Van Essen et al., 2013). HCP data
(https://www.humanconnectome.org) were acquired using protocols
approved by the Washington University institutional review board
(Mapping the Human Connectome: Structure, Function, and Heri-
tability; IRB #201204036). Informed consent was obtained from sub-
jects. Anonymized data are publicly available from ConnectomeDB
(https://db.humanconnectome.org). In the current study, resting-state
functional MRI (fMRI), T1-weighted image (T1) and diffusion-weighted
images (DWI) from 3T connectome scanners (modified Siemens PRISMA
with higher gradient strength) were used for investigation. Resting-state
fMRI was acquired with 2 mm isotropic voxels, T1 was in 0.7 mm
isotropic voxels, and DWI consisted of 90 directions for 1000, 2000 and
3000 s/mm? b-values in total 270 weighted directions with 1.25 mm
isotropic voxels.

We reconstructed SC and PL by using six WBT densities and two at-
lases for individual subjects, then calculated simulated FC from BOLD
signals generated by the computational model composed of coupled
phase oscillators with delayed coupling. We explored two free param-
eters of the model for each subject and condition and validated the
model through the two model fitting modalities. We also calculated
graph-theoretical network properties of SC and PL over considered con-
ditions and compared the network properties with the goodness-of-fit of
the model. The individual subjects were stratified into groups based on
three criteria derived by the network properties and modeling results.
The workflow of the current study is illustrated in Fig. 1.

2.1. Preprocessing of MRI data and connectivity extraction

The current study used an in-house pipeline for the extraction of SC
and PL matrices from the DWIs. The pipeline consists of four modules:
preprocessing of MRI and DWI data, WBT calculation, atlas transfor-
mation and connectivity reconstruction. The pipeline is publicly avail-
able (https://github.com/inm?7/vbc_dwmri). It was optimized for paral-
lel processing on high-performance computational clusters (Jiilich Su-
percomputing Centre, 2018).

The pipeline was created with functions of Freesurfer (Dale et al.,
1999), FSL (Smith et al., 2004), ANTs (Tustison et al., 2010), and
MRtrix3 (Tournier et al., 2019). Freesurfer was used for processing the
T1 including bias-field correction, tissue segmentation, cortical (sur-
face) reconstruction, volume-surface converting, and surface deforma-
tion for parcellation as well as for the correction of the eddy-current
distortions and head-motion in DWIs using the corresponding b-vectors
and b-values. MRtrix3 performed de-noising and bias-field correction
on the DWIs. The pre-processed images were used for co-registration
between the T1 and the DWIs and linear and non-linear transformation
by functions of FSL. Linear and non-linear transformation matrices and
images for registration from the standard MNI space to the native space
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Fig. 1. Workflow of the current study. (a) The whole-brain tractography (WBT) was generated by an in-house pipeline. Structural connectivity (SC) and average
path-length (PL) between brain regions were reconstructed based on a given brain parcellation/brain atlas (6 WBTs and 2 atlases). (b) The empirical BOLD signals
were extracted for each brain region from the ICA-FIX preprocessed HCP data, and the empirical functional connectivity (FC) was calculated between BOLD signals
by Pearson correlation coefficient. (¢) By using the empirical SC and PL matrices, the whole-brain network was reconstructed. The network nodes representing the
brain regions were equipped with the phase oscillators (Eq 1) coupled with the coupling weights (Eq 2) and time delays (Eq 3) extracted from the empirical SC and
PL matrices, respectively. The natural frequencies of the oscillators were extracted from empirical BOLD signals. The model generated simulated BOLD signals used
for the calculation of the simulated FC. (d) The simulated FC was compared with empirical FC and SC, and the model was validated by optimizing its parameters
for the best correspondence/fitting between the simulated and empirical data. At this, the impact of the data processing on the model validation was evaluated and

described.

and vice versa were estimated. Through the image registration, gray
matter, white matter, cortical/subcortical, cerebellar and cerebrospinal
fluid masks were generated in the native DWI space.

The WBT calculation module included only MRtrix3 functions,
where the response functions for spherical deconvolution were esti-
mated using multi-shell-multi-tissue constrained deconvolution algo-
rithm (Jeurissen et al., 2014). Fiber oriented distributions (FOD) were
estimated from the DWIs using spherical deconvolution, and the WBT
was created through the fiber tracking by the second-order integration
over the FOD by a probabilistic algorithm (Tournier et al., 2010). In the
latter step, we used six different numbers of total streamlines for varying
WBT density: 10K, 50K, 100K, 500K, 2M, and 10M, where the “K” and
“M” letters stand for thousand (Kilo-) and million (Mega-), respectively.
The tracking parameters were set as default values of tckgen function
from MRtrix documentation (https://mrtrix.readthedocs.io), where the
following values were used: step size = 0.625 mm, angle = 45 degrees,
minimal length = 2.5 mm, maximal length = 250 mm, FOD amplitude
for terminating tract = 0.06, maximum attempts per seed = 50, maxi-
mum number of sampling trials = 1000, and down sampling = 3.

The atlas transformation module applied the linear and non-linear
transformation matrix and images to atlases that were sampled in the
standard MNI space. We used the Schaefer atlas with 100-area parcella-
tion (Schaefer et al., 2018) and the Harvard-Oxford atlas with 96 cortical
regions (Desikan et al., 2006). After the transformation, the labeled vox-
els in the gray matter mask were selected for a seed and a target region.

Consequently, the tck2connectome function of MRtrix3 reconstructed SC
and PL (count and path-length matrices in Fig 1a).

For the empirical FC, the BOLD signals were extracted from the
resting-state fMRI data processed by ICA-FIX as provided by HCP repos-
itory (Griffanti et al., 2014). During the ICA-FIX, a weak high-pass
filtering (2000 s high-pass filter) was applied for detrending-like ef-
fect (Smith et al., 2013). The Schaefer atlas and the Harvard-Oxford
atlas were applied for the parcellation of the processed fMRI into
brain regions within the standard MNI 2 mm space (6th-generation in
FSL). Empirical FC was calculated using Pearson correlation coefficient
across BOLD signals extracted as mean signals of the parceled brain re-
gions. There were four resting-state fMRI sessions (1200 volumes, TR =
720 ms) which consist of two different phase-encoding directions (left
and right) scanned in different days. In addition, a concatenated BOLD
signal was generated by using all four z-scored BOLD signals from the
above four fMRI sessions, which resulted in five empirical FCs calcu-
lated for BOLD signals from the four fMRI sessions and the concatenated
BOLD signals for each subject. Finally, 12 simulation conditions (6 WBTs
X 2 atlases) were tested by simulation of the mathematical whole-brain
model, where the model parameters were optimized for the best fit be-
tween simulated and empirical data.

2.2. Mathematical whole-brain model

We simulated a whole-brain dynamical model of N coupled phase
oscillators (Cabral et al., 2011; Kuramoto, 1984; Yeung and Strogatz,
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1999)

N
. c )
Gi() =2mf;+ ; ki sin (@ (1 = 7)) = 9,(0) + .
i=1,2,...,N. (1)

The number of oscillators N corresponds to the number of brain regions
parceled as defined by a given brain atlas, where ¢;(f) models the phase
of the mean BOLD signal of the corresponding region, and the simulated
BOLD was calculated as sin(g;(1)). C is a global coupling which scales
the level of couplings of the whole-brain network. #; is an independent
noise perturbing oscillator i, which is sampled from a random uniform
distribution from the interval [-0.3,0.3]. The natural frequencies f; were
estimated from the empirical data as frequencies of the maximal spectral
peaks (restricted to the frequency range from 0.01 Hz to 0.1 Hz) of the
empirical BOLD signals of the corresponding brain regions. k;; stands for
the coupling strength between oscillators i and j, and 7;; approximates
the time delay of the signal propagation between oscillators i and ;.
They were calculated from the empirical SC and PL and determined by
the following equations:

w,

ij

kij = ) 2)
Yo w >

where w;; is the number of streamlines between i"* and j** parceled

regions and < W > is an averaged number of streamlines over all con-

nections except self-connections, and

Ly
7 = V> :TL,-I-, 3)

where 7 is a global delay (unit: s/m) which is a reciprocal of an average
speed of signal propagation < V > through the whole-brain network.
The time step of the numerical integration of Eq 1 by the stochastic Heun
method was fixed to 0.04 s, and the simulated signals were generated for
3500 seconds after skipping 500 seconds of the transient. The simulated
BOLD signals and the corresponding simulated FCs were calculated from
the phases downsampled to TR = 0.72 s, which is the repetition time of
HCP fMRI.

The considered mathematical model (Eq 1) has two main free pa-
rameters: the global coupling C and the global time delay z. The global
coupling ranged from O to 0.504 in evenly discretely distributed 64 val-
ues, and the global delay was from 0 to 423 s/m in evenly discretely
distributed 48 values. Therefore, 3072 (64 x 48) simulations were per-
formed for each subject to calculate the simulated FCs that were com-
pared with empirical functional and structural data for each simulation
condition. A total of 12,939,264 (64 x 48 x 12 x 351) simulations of
model (Eq 1) were performed in this study for 351 subjects with 12
conditions (6 WBTs x 2 atlases).

We explored the 2-dimensional model parameter space as men-
tioned above and found the optimal parameter values for the best corre-
spondence between simulated and empirical data. The correspondence
was calculated by Pearson correlation coefficient between simulated FC
(sFC) and empirical FC (eFC) and SC (eSC) depending on the model fit-
ting modality. For each subject and simulation condition, 5 parameter
planes of the functional similarity or functional model fitting modality (cor-
relation between sFC and eFC) were obtained corresponding to 5 eFCs.
In addition, one parameter plane of the structure-functional similarity or
structure-functional model fitting modality (correlation between sFC and
eSC) was also calculated. From each parameter plane, we selected the
optimal (C, 7)-parameter point, where the maximal correlation between
the simulated and the empirical data was reached. For the functional
model fitting the maximal similarity can be referred to as goodness-of-fit
of the model.

2.3. Effects of different WBT conditions

We revealed the effects of the varying WBT density on the model-
ing results by evaluating its impact on 1) the graph-theoretical network
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properties of empirical structural connectome, 2) patterns of the optimal
model parameters in the model parameter space, and 3) model perfor-
mance as given by the quality of the model fitting over simulation con-
ditions. Based on the results from the three approaches, we introduced
three criteria (see below) for differentiation of the influence of the WBT
density on the modeling results for individual subjects. To do this, we
stratified the entire subject population by splitting it into several sub-
groups according to the mentioned criteria based on (i) the relationships
between the network properties and the results of the functional model
fitting over WBT conditions, (ii) distributions of the optimal model pa-
rameters of the structure-functional model fitting, and (iii) positive and
negative slopes (increments) of the goodness-of-fit values (model per-
formance) across the two extreme cases of the considered 10K and 10M
WRBT streamlines for individual subjects.

2.3.1. Structural architecture and network properties over WBT conditions

To investigate the impact of the varying WBT density on the archi-
tecture of structural networks, we calculated graph-theoretical network
properties from SC and PL for each subject, WBT condition and atlas.
The considered 6 network properties (4 local properties and 2 global
properties) included the weighted node degree, clustering coefficient,
betweenness centrality, local efficiency, global efficiency and modular-
ity, which were calculated by the brain connectivity toolbox version
2019-03-03 in Matlab (Rubinov and Sporns, 2010). For the local prop-
erties, both the average (Avg.) and the standard deviation (S.D.) were
calculated.

For every subject, we calculated the Pearson correlation between the
values of a given network measure and the maximal functional model
fitting (goodness-of-fit) values across varied WBT densities. Then, for
every considered network measure, we split the subjects into two sub-
groups with positive and negative correlations. After that, we performed
the two-sample one-tail t-test to compare the functional model fitting be-
tween the split subgroups. Based on the results of the t-test, we selected
the network properties, where one of the subgroups showed significantly
higher functional model fitting than the other subgroup (Fig. A5 in Sup-
plementary materials). Finally, we overlapped all selected subgroups
with higher goodness-of-fit over all selected network properties and re-
ferred to this group as pattern 1. Consequently, the rest of subjects were
united into the second group referred to as pattern 2. We thus stratified
all subjects into two groups/patterns with potentially different impact
of the WBT conditions on the modeling results.

2.3.2. Impact of time delay on the model fitting

For another stratification criterion, the optimal model parameters of
the maximal correspondence between sFC and eSC were divided into
two clusters as suggested by the bimodal distribution splitting small
and large values of the optimal time delay (Fig 6). Since subjects can
move between the parameter clusters when the total number of the WBT
streamlines varies from 10M to 10K, we separated the subjects into five
classes: Always staying in cluster 1 (From 1 to 1) or in cluster 2 (From
2 to 2), only once moving either from cluster 1 to cluster 2 (From 1
to 2) or in opposite direction (From 2 to 1), and performing multiple
switching between the two clusters (Multiple). This approach based on
the distribution of the optimal model parameters was used as the second
criterion for stratification of subjects.

2.3.3. Variation of the model performance

The last stratification criterion was based on the behavior of the opti-
mal goodness-of-fit values when the number of WBT streamlines varied.
To quantify it, we calculated the increment of the maximal similarity be-
tween sFC and eFC matrices of the concatenated session for every indi-
vidual subject when the number of the WBT streamlines increases from
10K to 10M. Then, all subjects were divided into two subgroups exhibit-
ing either positive or negative slopes (increments) of the goodness-of-fit
behavior versus the number of WBT streamlines (Fig 7). According to
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Table 1
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Sensitivity of the considered graph-theoretical network properties to the variation of the WBT
density as revealed by the non-parametric one-way analysis of variance (Kruskal-Wallis ANOVA)
test. The corresponding p-values are presented in the right columns of the tables, where the bold
p-values indicate that the respective network property significantly changes (Bonferroni corrected
p < .05) when the number of WBT streamlines varies in the range indicated in the left columns of
the tables. The results are shown for the Schaefer atlas (upper table) and the Harvard-Oxford atlas
(lower table), and the abbreviations in the upper rows denote the network properties. WD: average
weighted node degree, CC: average clustering coefficient, BC: average betweenness centrality, LE:
average local efficiency, GE: global efficiency, and MQ: modularity Q.

Schaefer atlas WD CC BC LE GE MQ
10K, 50K, 100K, 500K, 2M, 10M  <0.001 <0.001 <0.001 <0.001 <0.001 <0.001
50K, 100K, 500K, 2M, 10M  <0.001 <0.001 <0.001 <0.001 <0.001 <0.001
100K, 500K, 2M, 10M  <0.001 <0.001 0.009 <0.001 <0.001 <0.001

500K, 2M, 10M 0.994 <0.001 0.920 <0.001 0.999 0.011

2M, 10M 0.916 <0.001 0.929 <0.001 0.947 1.000

Harvard-Oxford atlas WD cC BC LE GE MQ
10K, 50K, 100K, 500K, 2M, 10M  <0.001 <0.001 <0.001 <0.001 <0.001 <0.001
50K, 100K, 500K, 2M, 10M  <0.001 <0.001 <0.001 <0.001 <0.001 <0.001
100K, 500K, 2M, 10M 0.992 <0.001 0.012 <0.001 1.000 <0.001

500K, 2M, 10M 0.996 <0.001 1.000 <0.001 1.000 0.005

2M, 10M 1.000 <0.001 1.000 <0.001 1.000 0.913

this criterion, the subjects were stratified into two subgroups demon-
strating the best functional model fitting for either maximal or minimal
number of the WBT streamlines considered. Consequently, we used all
three criteria for the three-step stratification analysis (Fig 8).

3. Results

We investigate all three stratification criteria mentioned in the Meth-
ods (Section 2.3) and apply them to subject differentiation. This provides
an insight into the impact of the WBT density on the model performance
for individual subjects and suggests optimal configurations of the data
processing parameters. To follow the stratification steps, the obtained
results will be presented in parallel for the two considered brain parcel-
lations based on the Schaefer and Harvard-Oxford atlases and compared
between them.

3.1. Impacts of WBT density on structural connectome

Figure 2 illustrates the similarities between SC and PL (Fig 2 a and
¢) and behavior of the weighted node degree, clustering coefficient, be-
tweenness centrality, local and global efficiencies and modularity calcu-
lated from the normalized SC matrix over 6 WBT conditions (10K, 50K,
100K, 500K, 2M, and 10M streamlines) for the two atlases (Fig 2 b and
d). The similarity of the eSC matrices to the 10M case remains relatively
high except for the largest drop at 10K (Fig 2 al and c1). On the other
hand, the PL matrices have low similarity over the 6 WBT conditions,
very quickly deviate from the 10M case, exhibit practically no correla-
tion already for 100K and weakly anti-correlate for 10K (Fig 2 a2 and
c2). We also performed a non-parametric one-way analysis of variance
(Kruskal-Wallis ANOVA) test over the WBT conditions (Table 1).

By increasing the number of streamlines from 10K to 10M, the num-
ber of network edges increases, and the nodes become densely con-
nected, which resulted in monotonically increasing average binarized
(discarded weights of edges) node degrees as expected (Fig. Al in Sup-
plementary materials). However, the weighted node degree based on
the normalized count matrices (SC divided by its mean) used in model
(Eq 1) shows relatively stationary behavior across the WBT conditions,
especially, for dense WBT (Fig 2 bl and d1 and Table 1 WD). Decreas-
ing the number of streamlines, for example, from 10M to 10K (by 1000
folds) resulted in the corresponding reduction of the averaged weighted
node degree of the normalized SC by 6% and 33% for the Schaefer and
Harvard-Oxford atlases, respectively (Fig 2 b1 and d1). Similar station-
ary behavior can also be observed for the average betweenness centrality

and the global efficiency, especially, for dense WBT conditions (Fig 2 b3,
b5, d3, and d5 and Table 1 BC and GE). The network modularity shows
a weak monotonic increase when the WBT density increases (Fig 2 b6
and d6). For these network measures, relatively moderate changes were
observed when the number of streamlines varies from 10M to 10K. This
indicates that the connectivity in the model is still relatively strong, and
some other properties of the network architecture are to a large extent
preserved even for the extreme case of 10K WBT.

On the other hand, the average clustering coefficient, local efficiency
and their variances strongly decrease when the WBT density increases
(Fig 2 b2, b4, d2, and d4 and Table 1 CC and LE). In summary, WBT
density modulates the graph-theoretical network properties and results
in similar tendencies at the group level through varying WBT density
for both atlases. In particular, the clustering coefficient and the local
efficiency are significantly different across the WBT conditions already
between 2M and 10M cases (Table 1 CC and LE), where very high sim-
ilarities of SC can be observed (Fig 2 al and c1).

3.2. Impacts of WBT density on model fitting

Figure 3 shows the obtained parameter planes and the distributions
of the optimal model parameters over all subjects and simulated condi-
tions for the two fitting modalities (sFC versus eFC and sFC versus eSC).
The goodness-of-fit between sFC and eFC was observed for small delays
for both atlases. This is illustrated in Fig 3 a-d, where the red dots de-
picting large similarity values are concentrated on the left side of the
parameter plane demonstrating, however, different cluster shapes for
the Schaefer and the Harvard-Oxford atlases. We also note here that the
latter atlas could lead to a stronger fit between the sFC and eFC, compare
Fig 3 a and c. In contrast, in the case of the structure-functional model
fitting between sFC and eSC (Fig 3 e-h), both atlases demonstrate a sim-
ilar range of the correspondence (correlation) between simulated and
empirical data, however, the maximal similarity can also be attained
for large delay.

During the model validation for individual subjects under the 12
considered conditions (6 WBTs x 2 atlases), we also searched for the
optimal model parameter, where the maximal similarity between sFC
and empirical data (eFC and eSC) was achieved. The distributions of
such optimal parameters are depicted in Fig 3 b, d, f, and h for the two
fitting modalities and the two brain atlases. In agreement with these re-
sults, the best fit between sFC and eFC is attained for small delays (Fig 3
b and d), whereas the strongest structure-function correspondence be-
tween sFC and eSC can also be observed for large delays (Fig 3 f and h).
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Fig. 2. Impact of the WBT density on the structural architecture. Network measures of the structural connectome and similarity between them calculated for
different WBT densities (numbers of streamlines) for (a, b) the Schaefer atlas and (c, d) the Harvard-Oxford atlas. (a, c¢) Similarity of the connectivity matrices
(al, c1) SC and (a2, c2) PL calculated for different tractography densities by Pearson correlation across all subjects. (b, d) Variations of the network properties
calculated from the normalized SC matrix versus WBT density. The plot indices stand for 1: average weighted node degree, 2: average clustering coefficient, 3:
average betweenness centrality, 4: average local efficiency, 5: global efficiency, and 6: modularity as indicated in the plot titles. In each plot the thin gray lines depict
the behavior of the illustrated quantities for individual subjects together with the box plots, where the red lines, blue boxes and red pluses indicate the medians, the
interquartile ranges, and the outliers, respectively. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of
this article.)
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Fig. 3. Parameter planes and the distributions of the optimal model parameters (C, r)for the two model fitting modalities between simulated and empirical
data. Parameter planes are averaged (1-3) over all subjects (n = 351) separately for simulation conditions (10K, 500K, and 10M WBT densities) as indicated in
the plots (see supplementary Fig. A10 for all conditions). The correspondence between the simulated and empirical data was calculated between (a-d) simulated
FC and empirical FC and (e-h) simulated FC and empirical SC for (a, b, e, f) the Schaefer atlas and (c, d, g, h) the Harvard-Oxford atlas. The Pearson correlation
between the connectivity matrices is depicted by color ranging from small (blue) to large (red) values. (b, d, f, h) Distributions of the optimal model parameters of
the best model fitting calculated for all individual subjects and simulation conditions. (For interpretation of the references to colour in this figure legend, the reader

is referred to the web version of this article.)
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In the latter case, the parameter distributions apparently demonstrate a
two-cluster shape of small and large delays, which is addressed in detail
below.

Together with the optimal model parameters for individual subjects,
we also collected the corresponding maximal similarities between the
simulated and empirical data, which are illustrated in Fig 4 for the 12
simulated conditions and for the two fitting modalities of the correspon-
dence between sFC and eFC (Fig 4a) and between sFC and eSC (Fig 4b).
Results of the functional model fitting in all conditions (Fig 4a) were
not from the normal distributions, where the null hypothesis was re-
jected by x2 goodness of fit test with p < .05. Also in the case of the
structure-functional model fitting (Fig 4b) many conditions were not
from the normal distributions. Therefore, Kruskal-Wallis test was used
for testing significant difference in all conditions (across tractography
densities). Consequently, we performed Wilcoxon signed rank one-tail
test to evaluate whether the maximal similarities between the simulated
and empirical data for one condition are significantly higher or lower
than those for the other conditions (see p values in Fig 4).

For the functional model fitting (sFC versus eFC) and the Schaefer at-
las (Fig 4a, blue violins), the models with 2M and 10M WBTs performed
better than with the other WBTs, and the performance of the model de-
creased when the number of streamlines decreased. On the other hand,
the functional model fitting for the Harvard-Oxford atlas revealed the

optimal condition at 50K or 100K WBT (Fig 4a, orange violins). Fur-
thermore, the model could fit better to eFC for the Harvard-Oxford atlas,
which was also observed in Fig 3. For the structure-functional model fit-
ting (sFC versus eSC), the situation is different, where 2M or 10M WBTs
are preferable for the strongest correspondence between the simulated
and empirical data for both atlases demonstrating approximately similar
extent of the maximal model fitting (Fig 4b, see also Fig 3).

3.3. Relationships between network properties and the functional model
fitting

As discussed above, the WBT density modulates the structural con-
nectome. Consequently, it can also influence the dynamics of the model
(Figs 3 and 4). In this section, we investigate the effects of the graph-
theoretical network properties modulated by WBT density on the model
performance.

For each of the considered 6 network properties, we tested the re-
lationships between their values and the maximal similarity between
sFC and eFC as given by the Pearson correlation across 6 WBT con-
ditions for each individual subject. The considered network properties
demonstrate a pronounced agreement with the goodness-of-fit values at
the level of individual subjects (Fig 5 al and bl). Some distributions
of the correlation coefficients are significantly shifted from zero except
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for Avg. WD, S.D. BC, and GE for the Schaefer atlas and S.D. BC for
the Harvard-Oxford atlas (see Fig 5 for abbreviations). The presented
results are reproducible to retest over individual 5 sessions (4 fMRI ses-
sions and the concatenated case) and merged data of the goodness-of-fit
values (see supplementary Fig. A2). Based on the results illustrated in
Fig 5 al and bl and supplementary Fig. A2, we can conclude that the
changes in the model performance for the individual subjects are related
to the changes in the network properties across different WBTs.

The distributions of the correlation coefficients between the network
properties and the goodness-of-fit values may differ for different atlases
(Fig 5 al and b1l) indicating a complex relationship between the struc-
tural connectome and modeling results. To address such relationships in
more detail, we split the subjects into two subgroups of positive or nega-
tive correlation for every considered network metric. Then we intersect
the groups with highest goodness-of-fit for the network metrics marked
by asterisks in Fig 5 al and b1 with significant difference between the
subgroups and stratify the subjects into two patterns as explained in
Methods (Section 2.3.1, see also Figs. A3 - A5 in Supplementary mate-
rials).

Based on the results of the tests, for the Schaefer atlas, we selected
subjects exhibiting positive correlation with the standard deviation of
weighted node degree (S.D. WD +) and negative correlation with the
average betweenness centrality (Avg. BC-) for pattern 1, which have sig-
nificantly higher values of the goodness-of-fit of the model than those of
the complementing subgroups (S.D. WD- and Avg. BC+), respectively.
The intersection of the two selected subgroups, i.e., S.D. WD+ (n = 93)
N Avg. BC- (n = 329) = 82, constituted the stratified pattern 1, whereas
the rest of the subjects (n = 269) were grouped into pattern 2.

We found that the two patterns of the split subjects subgroups
demonstrate significantly different quality of the goodness-of-fit of the
model depending on the WBT conditions (Fig 5a2). For statistical test-

ing of the differences between the patterns 1 and 2, y? goodness of fit
test was used to test for a normal distribution for each condition of pat-
tern 1 and pattern 2. The Wilcoxon rank sum one-tail test was then used
for a non-parametric test of the difference between the patterns if the
null-hypothesis for a normal distribution was rejected by the y? test.
Otherwise, two-sample one-tail t-test was used for comparing normal
distributions of pattern 1 and pattern 2. The significant differences be-
tween the patterns are indicated by asterisks in Fig 5a2, which is the case
for any WBT density. We also found that the fitting values for both pat-
terns 1 and 2 monotonically increase for higher WBT density (Fig 5a2).
In addition, we tested the changes of the goodness-of-fit of the model
for each pattern when the WBT density varies by using Wilcoxon signed
rank test. As a result, for the Schaefer atlas, 500K or more streamlines
of the pattern 1 and 2M or more streamlines of the pattern 2 showed
significantly higher goodness-of-fit values than for any sparser WBT con-
ditions.

For stratification for the Harvard-Oxford atlas, we selected subjects
from the intersection of the following subgroups derived as above of pos-
itive and negative correlations with the network metrics, which showed
significantly higher goodness-of-fit values than the complementing sub-
groups: Avg. CC-, S.D. CC-, Avg. BC-, Avg. LE-, S.D. LE-, GE+, and MQ +
(see Fig 5 for abbreviations). As above, the sign “+” or “-” after the
property name indicates the corresponding subgroups of subjects ex-
hibiting positive or negative correlations with the considered network
properties, respectively. Such an intersection of the subgroups resulted
in a stratified pattern 1 containing 173 subjects complemented by the
others, i.e., 178 subjects of pattern 2.

We here found that patterns 1 and 2 exhibit different behavior of
the goodness-of-fit values when the WBT density varies (Fig 5b2). Pat-
tern 1 monotonically increases for large WBT density as before, whereas
pattern 2 apparently demonstrates a non-monotonic behavior with an
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Fig. 6. Clusters of the optimal model parameters of the maximal similarity between simulated FC and empirical SC. The optimal parameters for (a) the
Schaefer atlas and (b) the Harvard-Oxford atlas from Fig 3 f and h, respectively, (n = 2106 values for 351 subjects and 6 WBTSs) were split into two subgroups
as illustrated in the two lower plots, where the one- and two-dimensional distributions of the optimal parameters are depicted. The upper plots with error bars
show the maximal similarity of the functional model fitting between simulated FC and empirical FC of the concatenated fMRI session for the subjects from the two
clusters versus the number of the WBT streamlines. The alluvial plots to the right schematically illustrate the interchange of the cluster members when the number
of streamlines varies from 10M to 10K. The white numbers in each WBT step indicate the number of subjects in the clusters.

optimal point at 50K of the WBT streamlines. Statistical testing with These results also establish a connection between the two fitting
Wilcoxon signed rank test demonstrated that 100K or more streamlines modalities and the time delay, where the impact of the latter was not
of pattern 1 showed significantly higher goodness-of-fit values than any observed in the distributions of the optimal parameters of the functional
sparser WBT condition. However, 50K streamlines of pattern 2 is the op- similarity between sFC and eFC (Fig 3 b and d) and can only be revealed
timal condition that shows significantly higher correspondence between by mediation of the structure-functional correspondence. Another corre-
the simulated and empirical data than for any other condition, sparser spondence can be established between the values of the optimal global
of denser WBT. delays and the natural frequencies of the phase oscillators (Eq 1). To

Based on the presented results, we can conclude that the optimal evaluate such a dependence, the broadly distributed positive global de-
number of the WBT streamlines should be considered large (~500K- lays in cluster 2 were correlated with the mean natural frequencies (f;)
10M) for the Schaefer atlas (Fig 5a2). Interestingly, the best goodness- averaged over all oscillators (Eq 1). The mean natural frequency of the
of-fit of the model for the Harvard-Oxford atlas can be reached for model is also varying across subjects, and we found a well-pronounced
much sparser WBT at ~50K streamlines for more than 50% of subjects negative correlation between the mean natural frequencies and the opti-
(Fig 5b2). mal delays for the maximal structure-functional similarity between sFC

and eSC (see Figs. A7 and A8 in Supplementary materials). This indicates
that subjects with slow BOLD oscillations are modeled by system (Eq 1)
with large optimal delay if the best correspondence between structure
and function has to be achieved.

When the number of the WBT streamlines varies, subjects may ex-
change their membership in the two clusters (Fig 6, the vertical alluvial
plots). Interestingly, for the Schaefer atlas, the ratio of subjects in the
two clusters is gradually changing when WBT is getting sparser (from
10M to 10K), where more and more subjects move to cluster 1 approx-
imately balancing the subgroup sizes at 10K case (Fig 6a, the alluvial
plot). In contrast, there are only small exchanges of the subjects between
clusters for the Harvard-Oxford atlas keeping the group sizes approxi-
mately constant for all WBT conditions (Fig 6b, the alluvial plot). Cluster
2 contains most of the subjects as is for both atlases for the case of 10M
of the WBT streamlines. We used the splitting of the subjects into the
discussed two clusters as the second criterion of the stratification anal-
ysis.

It is also important to observe that the structure-functional corre-
spondence between the empirical connectomes eFC and eSC exhibited
weak opposite relationships between parameter clusters and across the

3.4. Effects of time delay on model validation

Based on the clustered distributions of the optimal model parame-
ters of the maximal structure-functional similarity between sFC and eSC
(Fig 3 f and h), we divided the optimal parameter points and the corre-
sponding subjects into two clusters (Fig 6). In such a way, the cluster of
parameter points with small delay (cluster 1) was split from the other
points characterized by relatively large delay (cluster 2) based on their
bimodal distributions (Fig 6, the red dotted lines in the histograms in
the bottom plots). By dividing the subjects into the two subgroups corre-
sponding to the above clustering of their optimal parameters, we found
that the goodness-of-fit values of the functional model fitting are signifi-
cantly higher in cluster 2 than in cluster 1 consistently for all simulation
conditions (all WBTs and both atlases), see Fig 6 (upper plots). Similar
effects can also be observed for the structure-functional model fitting be-
tween sFC and eSC (see Fig. A6 a2 and b2 in Supplementary materials).
The time delay in coupling thus played a constructive role in the model
validation against empirical data and led to a better correspondence for
structure-functional as well as functional model fitting.

10
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Fig. 7. Subject stratification according to the model performance across 6 WBTs. (a, b) Goodness-of-fit values of the functional correspondence between
simulated FC and empirical FC for (a) the Schaefer atlas and (b) the Harvard-Oxford atlas and for the two groups of the subjects stratified according to the third
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for details) as indicated in the legends, where the number of subjects in each group is also pointed out. The asterisks indicate the statistically significant differences
between the two subject groups (p < .05, two-sample one-tail t-test for normal distributions and Wilcoxon rank sum one-tail test for non-parametric test).

number of the WBT streamlines as compared to the correspondence be-
tween simulated and empirical data (see Fig. A6 al and b1 in Supple-
mentary materials). This indicates a nontrivial character of the reported
results that do not directly follow from the empirical structure-function
correspondence.

3.5. WBT-Induced changes of model performance

In the previous sections, we observed that the behavior of the
goodness-of-fit values versus the WBT conditions is not akin to that of
the other atlas. We, therefore, explicitly searched for such divergent dy-
namics and looked for the subjects with the best model performance
for the most sparse or the most dense WBT. The subjects are then split
into two subgroups based on the opposite behavior of the model per-
formance when the number of WBT streamlines varies, see Methods
(Section 2.3.3) for detail. Figure 7 illustrates the different dynamics of
the goodness-of-fit values of the two subgroups of subjects for the two
atlases.

As reported before, the maximal similarity between sFC and eFC
monotonically increases for the Schaefer atlas when the WBT is getting
denser (Figs. 4 - 6). We thus explicitly searched for such conditions, i.e.,
when the goodness-of-fit was larger for 10M case than for 10K case, and
the corresponding line of the model performance had a positive slope.
We found that the subjects split very unevenly according to such crite-
rion, and most of them (n = 339) exhibited positive slope, where the sim-
ilarity between simulated and empirical data monotonically increases
when the number of streamlines increases (Fig 7a). Each split subgroup
was tested for a normal distribution by y? goodness of fit test over WBT
densities. The null hypothesis of the y? test was rejected for each sub-
group and each condition. Therefore, we performed Wilcoxon signed
rank test. As a result, for the subject subgroup with the positive slope
the case of 2M or more WBT streamlines showed significantly higher
goodness-of-fit of the model than any sparser WBT condition (Fig 7a,
red curve).

In the case of the Harvard-Oxford atlas, the goodness-of-fit values
may exhibit a non-monotonic behavior and attained the maximal values
at 50K WBTs (Figs. 4 and 5). After stratification according to the third
criterion, the both subgroups contain large fractions of the entire subject
population with the positive slope (n = 248) and the negative slope (n
= 103) (Fig 7b). For the statistic analysis, the null hypothesis of the y?
test was not rejected, and we thus performed the two-sample paired t-
test. The test resulted in the subgroup with the positive slope showed
significantly higher goodness-of-fit of the model with 100K or more WBT
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streamlines than any sparser WBT condition (Fig 7b, red curve). On the
other hand, the subgroup with the negative slope showed significantly
higher goodness-of-fit of the model with 50K or less WBT streamlines
than any denser WBT condition (Fig 7b, blue curve).

3.6. Stratification analysis

As investigated in the previous sections, the entire subject popula-
tion can first be split into two groups based on the two patterns of the
relationships between network properties and the functional model per-
formance (Fig 5). Second, the subjects can be split based on the clus-
tered distribution of the optimal parameters of the structure-functional
maximal similarity between sFC and eSC (Fig 6). Third, different be-
havior of the goodness-of-fit values of the best correspondence between
sFC and eFC can result in positive and negative slopes versus the WBT
conditions, which can also be used for subject stratification (Fig 7). By
combining all three approaches, we illustrated stratification results in
the alluvial plots in Fig 8. Here the proportions of the stratified subjects
are shown when the above stratifying criteria are consequently applied
to the entire subject population for each atlas. The stratified subjects
show different extent and behavior of the goodness-of-fit values of the
functional model fitting over the WBT conditions (Fig 8).

In the case of the Schaefer atlas, according to the first criterion, we
can expect that subjects of pattern 1 form a relatively small fraction
(23%) of the entire subject population, but they have shown higher
goodness-of-fit (Fig 5a2 and Fig 8a2). The second stratification step in
Fig 8 reflects the interchanging behavior between the parameter clusters
observed in Fig 6a. In particular, the stratified group 3 (parameter clus-
ter 2 of large delay) show better performance than the stratified group 2.
Finally, the third criterion practically does not differentiate the subjects
into positive and negative slopes, see also Fig 7. The declining curves of
the goodness-of-fit when the number of the WBT streamlines decreases
imply that the optimal number of the total streamlines for the simula-
tion should be considered large, for example, more than 500K: 2M or
10M of the WBT streamlines (Fig 8a2).

For the Harvard-Oxford atlas, subjects stratified into pattern 1 by
the first criterion show a monotonic increment of the goodness-of-fit
for dense WBT as expected (Fig 8b2, see also Fig 5b2). In addition, we
can also expect that the subjects from pattern 2 will have the maximal
model performance for sparse WBTs (Fig 5b2 and Fig 8b2). In the second
stratification step, the overwhelming majority of subjects from pattern
1 were sorted to the group of persistent members of cluster 2, i.e., the
subgroup with large delay for the best structure-functional model fitting
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(Fig 8b1, see also Fig 6). Finally, the subjects in pattern 2 can still be split
into two subgroups with the inclining and the declining curves of the
goodness-of-fit values by the third criterion (Fig 8b2, stratified groups 2
and 3). This can further refine the differentiation of subjects of the best
model performance at sparse WBT density (see also Fig 7).

The model evaluation with the Harvard-Oxford atlas shows different
optimal conditions than that for the Schaefer atlas (Fig 8b2). The opti-
mal streamline number may depend on the stratification subgroups to
which the subject belongs, and which exhibited very different behavior
of the goodness-of-fit when the number of streamlines varied (Fig 8b2).
For example, the optimal number of streamlines for a better model per-
formance could range from 10M to 100K for the subjects from subgroup
1 in Fig 8b2 (solid red curve). On the other hand, for more than 20%
of subjects (n = 80) of the entire subject population, i.e., for those from
the stratified group 3 (Fig 8b2, dashed blue curve), the optimal condi-
tions are at ~50K WBT streamlines, and more streamlines may lead to
the degradation of the quality of the model validation. For other 18%
of subjects (n = 66, group 3 in Fig 8b2, solid blue curve) a sparse WBT
can also be a reasonable option.

4. Discussion

The purpose of the current study was to explore how the process-
ing of the neuroimaging data can influence the dynamics and valida-
tion of the whole-brain mathematical dynamical models informed by the
empirical data. We considered several simulation conditions based on
varying data processing parameters, such as the number of total stream-
lines of WBT and brain atlases. While the latter defined how the brain
is parceled into several brain regions that are considered as network
nodes in the model, the former influenced the underlying SC (stream-
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line counts) and PL (streamline path lengths) used for the calculation of
the coupling weights and time delays in the coupling between nodes.
A straightforward interpretation of the investigated number of WBT
streamlines as a count of anatomical fiber bundles should be made with
caution which was extensively discussed by Jones et al. (2013). Instead,
the reconstructed streamlines can be considered as a good guess of the
white matter connectivity (Caminiti et al., 2013; Jones et al., 2013; Ver-
gani et al., 2014). We discussed how the WBT density can influence the
structural information fed to the model and the corresponding model-
ing results for the considered brain atlases. We found that the parcella-
tion with different atlases showed similar changes of the architecture of
the structural networks, but distinct trends of the goodness-of-fit of the
model to the empirical data across the number of WBT streamlines. Con-
sequently, we suggested optimal configurations of the considered data
and model parameters for the best model fit at the group level as well as
for personalized models of individual subjects based on the properties
of the empirical and simulated data.

The applied model-based approach followed the line of research sug-
gested and developed in many modeling studies, see, for example, the
papers (Breakspear et al., 2010; Cabral et al., 2011; Deco et al., 2017;
Fukushima and Sporns, 2018; Honey et al., 2009; Ponce-Alvarez et al.,
2015; Popovych et al., 2019) and references therein. The potential of
the whole-brain dynamical models to explain the properties of the brain
dynamics and structure-function relationship was demonstrated by a de-
tailed investigation of the correspondence between empirical and simu-
lated brain connectomes. At this, the connectivity patterns of the under-
lying structural network as related to the inter-node coupling strengths
and delays can play a crucial role for observing a pronounced structure-
function agreement (Popovych et al., 2011; Ton et al., 2014). It is thus
important to extract the empirical SC and PL used for evaluation of pa-
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rameters of the model connectivity as plausible as possible in order to
obtain biologically realistic modeling results (Knock et al., 2009). With
this respect, the structure-functional model fitting can be higher than
the functional goodness-of-fit as we observed in the current study. One
possible explanation might be related to that the empirical SC serves as
the underlying backbone of the whole-brain modeling, and simulated FC
generated by such models may better replicate the underlying network
structure than empirical FC. However, additional investigation is neces-
sary to clarify this question. The current study focuses on the impact of
tractography density on the modeling.

4.1. Evaluating structural architecture for modeling

Within the framework of the modeling approach, the model parame-
ters can be varied in a broad range and sense to evaluate their impact on
the simulated dynamics. As related to the discussed network topology,
beyond the variation of the global coupling strength, the network edges
approximating the anatomical connections between brain regions can
be removed to obtain a better fit between simulated and empirical FC
(Cabral et al., 2012). Aiming at the best correspondence between simu-
lated and empirical data, new inter-region anatomical connections were
allowed to be created, or existing structural connections to be rewired
according to algorithms based on the differences between the simulated
and empirical FC including the gradient-descent method (Deco et al.,
2019; 2014). The model connectivity can be composed of both empiri-
cal SC extracted from dwMRI data and local intra-cortical connections
incorporated into the model based on the distance-dependent approxi-
mations (Proix et al., 2016).

Among many possible ways of SC variation for the best model fit-
ting, which might also require additional justifications, we propose to
stay within the framework of realistically extracted signals from dwMRI
data and consider the well-established approaches for the data process-
ing. In this study, we used state-of-the-art techniques for calculation of
WBT and SC (Tournier et al., 2019) and investigated the impact of a
constructive parameter for the structural connectome, the number of
extracted streamlines on graph-theoretical measures of SC, and their in-
fluence on the modeling results.

As discussed in Fig 2 and Table 1, the variation of the WBT density
affects the properties of the model networks calculated from the struc-
tural connectome, especially, the PL matrices, where the edges with rel-
atively small numbers of streamlines are sensitive to reducing the total
number of tracking trials. Therefore, SC extracted from relatively sparse
WBT with small number of streamlines may not guarantee a higher re-
producibility with stable network properties, where some edges will be
disconnected or reconnected from time-to-time, when streamlines will
be generated. We, nevertheless, considered an extreme case of 10K WBT
streamlines in this study to illustrate the effects observed for very sparse
WBT density.

4.2. Graph-theoretical network properties across conditions

For the extraction of the brain structural and functional connectomes
and for setting up the model network, we used two paradigmatically
distinct brain atlases. These are the Schaefer atlas (Schaefer et al., 2018)
that is based on functional MRI data, and the Harvard-Oxford atlas of
anatomy-related parcellation (Desikan et al., 2006) that is based on the
landscape of gyri and sulci on the cortical surface. We found that the
graph-theoretical properties of the structural networks built based on
these two parcellations are changing with similar tendencies across the
considered WBT conditions for both atlases (Fig 2 and Table 1).

Some of the considered network properties exhibit high sensitivity
to the variations of the WBT density, for example, the clustering coeffi-
cient (CC) or the local efficiency (LE), see Table 1. On the other hand,
the weighted node degree (WD) or the global efficiency (GE) manifested
significant changes only when the number of the calculated WBT stream-
lines was decreased from 10M to 100K or 50K, i.e., 100-200 times.
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The sensitivity was stronger for the Schaefer atlas. These findings might
be of importance when the discussed network properties influence the
modeling results. We also found that the mentioned network metrics
(CC and LE) with sensitive dependence on the WBT density strongly
anti-correlate with the goodness-of-fit of the model for the Schaefer at-
las (Fig 5al), while the dependence is weak with insensitive network
measures (WD and GE). Given the impact of the WBT density on the
properties of the structural networks (Fig 2), this may explain the clear
monotonic behavior of the goodness-of-fit for the Schaefer atlas versus
the number of streamlines (Fig 5a2). The situation is different for the
Harvard-Oxford atlas, where the relationship with CC and LE is in aver-
age less pronounced, whereas the correlation with WD and GE is more
enhanced (Fig 5b1). This may explain the apparently mixed behavior of
the goodness-of-fit for this brain atlas (Fig 5b2).

In summary, some of the network metrics are characterized by differ-
ent relationships with the results of the model validation for the varying
WRBT density for different parcellations, see also supplementary Figs. A3
and A4 for the relationships of all considered network properties. There-
fore, even if the tractography density modulates the graph-theoretical
network properties in similar changes for the considered atlases as we
observed, it can however influence the dynamics of mathematical mod-
els in different ways depending on the used brain parcellation.

4.3. Role of time delay in the modeling

It is interesting to note here that the best agreement between sim-
ulated and empirical functional data (sFC and eFC) was attained for
the considered model at small (zero) delays (Fig 3). It is therefore safe
to consider such a type of model simulating ultra slow BOLD dynam-
ics without delay in coupling (Deco et al., 2019; 2017; Ponce-Alvarez
et al., 2015). Nevertheless, the goodness-of-fit for the model with de-
lay (including zero delay) exhibits around 9% larger values than that
without delay (zero delay only), see Fig. A9 a and b in Supplementary
materials. On the other hand, the role of delay in coupling is apparent
for the structure-functional (sFC-eSC) model fitting, where the corre-
spondence between sFC and eSC is also enhanced by around 14% for
the model with delay when compared to the case without delay (Fig.
A9 c and d in Supplementary materials).

We also reported on the clustered distributions of the optimal model
parameters for the structure-functional model fitting sFC-eSC and their
behavior (migration between clusters) when the WBT density varies for
the two considered brain atlases (Fig 6). Such a behavior of the opti-
mal parameters might be related to the performance of the model at
the group level. Indeed, we observed that subjects from the parameter
cluster with large delay demonstrated better quality of the model vali-
dation for both functional and structure-functional model fittings (Fig 6
and supplementary Fig. A6). In other words, if the optimal parameters
for the maximal sFC-eSC correspondence have a large delay, we might
expect a better correspondence between sFC and eFC. Accordingly, we
might also expect that the group-averaged goodness-of-fit for the Schae-
fer atlas will decay faster than that for the Harvard-Oxford atlas when
the number of streamlines decreases as observed in Fig 4. This is be-
cause parameter points (subjects) migrate to the cluster with small de-
lay, and fewer optimal parameter points with large delay can be found
for a sparser WBT for the Schaefer atlas. These arguments can suggest a
possible mechanism associated with the impact of time delay in coupling
on the model fitting results.

The values of the optimal non-zero delays for the structure-functional
fitting modality can be influenced by the natural frequencies of oscilla-
tors (Eq 1) demonstrating relatively strong negative correlations with
the structure-functional model fitting as illustrated in supplementary
Figs. A7 and A8. Therefore, the average frequency of BOLD oscillation
for a given subject can influence the values of the optimal delay for the
best structure-functional correspondence. The parameter of the global
delay scales the average velocity of signal propagation between brain re-
gions. Consequently, the optimal speed of the signal propagation in the
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brain as revealed by the modeling results can be regulated by the mean
intrinsic time scale of oscillatory activity of individual brain regions.

4.4. Stratification analysis and optimal conditions

The problem of the optimal number of the total WBT streamlines was
also addressed in this study beyond the group-level analysis and aimed
at the best fitting of the personalized models for individual subjects. To
investigate the impact of the WBT density at the level of individual sub-
jects, we stratified the entire subject population into smaller subgroups
with more homogeneous (heterogeneous) model dynamics within (be-
tween) subgroups. One of the stratification approaches is to show the ef-
fect of the graph-theoretical network properties modulated by the WBT
density on performance of the model. We found that such correlations
for individual subjects are well-pronounced for the Schaefer atlas, but
they are somewhat less expressed for the Harvard-Oxford atlas (Fig 5 al
and b1l). Nevertheless, the stratification can be designed by combining
the splitting results for different network properties, which resulted in
a clear differentiation of the impact of the WBT streamline number on
the model validation across stratified subgroups and brain parcellations
(Fig 5).

Another approach to stratification of the subjects was based on the
clustering of the optimal delay for the structure-functional model fit-
ting discussed above. It can provide an informed view on the validation
results for the functional model fitting (Fig 6). One more stratification
approach is illustrated in Fig 7, where the subjects were split into two
subgroups of qualitatively different individual behavior of the goodness-
of-fit versus the streamline number. Based on the obtained results, we
can propose to use the large number (~2M-10M) of the WBT streamlines
for the best functional model validation, if the Schaefer atlas was used
for the brain parcellation.

On the other hand, the recommendation is completely opposite for
more than 20% of subjects for the brain parcellation based on the
Harvard-Oxford atlas (Fig 8b2, blue dashed curve 3). For such sub-
jects, the large number of streamlines can lead to a lower quality of
the model fitting as compared to rather sparse WBT containing, for ex-
ample, only 50K streamlines. Differentiating the subjects according to
the discussed stratification criteria can help to design an individual data
processing workflow and configurations of parameters for the optimal
personalized modeling of the brain dynamics. In particular, based on
the obtained results, we can suggest a personalized optimal number of
the WBT streamlines for the considered brain parcellation for the better
model performance at the modeling of the resting-state brain dynamics.

Based on the results of the stratification analysis, we may suggest a
few tentative guidelines to possible evaluation of personalized optimal
number of the WBT streamlines for the whole-brain model of the resting-
state brain dynamics.

e Around 50K WBT streamlines can be considered as a sparse WBT
condition.

e More than 2M WBT streamlines can be considered as a dense WBT
condition.

e Graph-theoretical network properties of the structural connectome

can influence the goodness-of-fit of the model over different tractog-

raphy densities. Such relationships to the data variables may con-

tribute to the mechanism of the fitting variability and subject strat-

ification into qualitatively different subgroups.

Modeling with time delay in coupling can enhance goodness-of-fit

of the model.

¢ A dense WBT is not always the best condition for the whole-brain

modeling.

Brain parcellation may affect the optimal parameters of the data pro-

cessing and should be taken into account already at early stages of

the data analytics.

To understand the underlying mechanism of the stratification results,
more detailed investigation aimed at quantitative validations and gen-
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eralization of the results should be performed. From the results of the
current study we can already conclude that optimal configurations of
the data processing and quantitative guidelines are important for per-
sonalized data processing and modeling.

4.5. Limitations and future direction

Although we used the data with high quality of the data pre-
processing and physiological noise reduction, however, we note that
the reported results were obtained from the neuroimaging data of young
adults with relatively narrow age ranges. In order to generalize our con-
clusions, they have to be verified for other datasets with broader dis-
tribution of the phenotypic parameters and other data quality such as
clinical-grade scans.

The current study used empirical FC based on the resting-state
fMRI measurements for evaluation of the model performance. Regard-
ing other data modalities, future works can include electrophysiological
data with electrical modeling for general outcomes. Furthermore, other
fitting modalities can also be possible metrics to evaluate whole-brain
modeling, for instance, dynamic FC or effective connectivity. Detailed
investigation under such conditions can contribute to a better coverage
and optimization of the model validation for personalized modeling.

5. Summary and conclusion

We found that varying number of total streamlines for WBT affects
the network properties of the structural connectome and performance
of the mathematical modeling of the resting-state brain dynamics. The
results showed that a dense WBT is not always the best condition for
the whole-brain mathematical modeling represented by a system of in-
teracting oscillators with time delay in coupling. We also demonstrated
that the optimal parameters of the data processing may be affected by
the utilized brain parcellation that should be taken into account already
at early steps of the data processing workflow. The present study did
not aim to provide any quantitative conclusion concerning the optimal
number of WBT streamlines, but rather to illustrate possible qualitative
effects caused by the varying WBT density on the structural connectome
and modeling results in combination with functional and anatomical
brain parcellations. Our results can contribute to a better understand-
ing of the interplay between the data processing and model parameters
and their influence on data analytics of dwMRI and modeling of the
resting-state fMRI data.
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