001     892610
005     20240712113029.0
024 7 _ |a 10.1038/s41467-021-22472-x
|2 doi
024 7 _ |a 2128/27808
|2 Handle
024 7 _ |a altmetric:103832264
|2 altmetric
024 7 _ |a 33850155
|2 pmid
024 7 _ |a WOS:000640638000003
|2 WOS
037 _ _ |a FZJ-2021-02199
082 _ _ |a 500
100 1 _ |a Zhao, Yicheng
|0 P:(DE-Juel1)187394
|b 0
|e Corresponding author
|u fzj
245 _ _ |a Discovery of temperature-induced stability reversal in perovskites using high-throughput robotic learning
260 _ _ |a [London]
|c 2021
|b Nature Publishing Group UK
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1621347195_27695
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Stability of perovskite-based photovoltaics remains a topic requiring further attention. Cation engineering influences perovskite stability, with the present-day understanding of the impact of cations based on accelerated ageing tests at higher-than-operating temperatures (e.g. 140°C). By coupling high-throughput experimentation with machine learning, we discover a weak correlation between high/low-temperature stability with a stability-reversal behavior. At high ageing temperatures, increasing organic cation (e.g. methylammonium) or decreasing inorganic cation (e.g. cesium) in multi-cation perovskites has detrimental impact on photo/thermal-stability; but below 100°C, the impact is reversed. The underlying mechanism is revealed by calculating the kinetic activation energy in perovskite decomposition. We further identify that incorporating at least 10 mol.% MA and up to 5 mol.% Cs/Rb to maximize the device stability at device-operating temperature (<100°C). We close by demonstrating the methylammonium-containing perovskite solar cells showing negligible efficiency loss compared to its initial efficiency after 1800 hours of working under illumination at 30°C.
536 _ _ |a 121 - Photovoltaik und Windenergie (POF4-121)
|0 G:(DE-HGF)POF4-121
|c POF4-121
|x 0
|f POF IV
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Zhang, Jiyun
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Xu, Zhengwei
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Sun, Shijing
|0 0000-0002-6179-1390
|b 3
700 1 _ |a Langner, Stefan
|0 P:(DE-Juel1)180636
|b 4
700 1 _ |a Hartono, Noor Titan Putri
|0 0000-0002-0748-0620
|b 5
700 1 _ |a Heumueller, Thomas
|0 0000-0002-6974-410X
|b 6
700 1 _ |a Hou, Yi
|0 0000-0002-1532-816X
|b 7
700 1 _ |a Elia, Jack
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Li, Ning
|0 P:(DE-Juel1)180778
|b 9
700 1 _ |a Matt, Gebhard J.
|0 0000-0002-1138-3671
|b 10
700 1 _ |a Du, Xiaoyan
|0 P:(DE-Juel1)180633
|b 11
700 1 _ |a Meng, Wei
|0 P:(DE-HGF)0
|b 12
700 1 _ |a Osvet, Andres
|0 P:(DE-HGF)0
|b 13
700 1 _ |a Zhang, Kaicheng
|0 P:(DE-HGF)0
|b 14
700 1 _ |a Stubhan, Tobias
|0 P:(DE-Juel1)176894
|b 15
700 1 _ |a Feng, Yexin
|0 0000-0003-1302-7555
|b 16
700 1 _ |a Hauch, Jens
|0 P:(DE-Juel1)177626
|b 17
700 1 _ |a Sargent, Edward H.
|0 0000-0003-0396-6495
|b 18
700 1 _ |a Buonassisi, Tonio
|0 0000-0001-8345-4937
|b 19
700 1 _ |a Brabec, Christoph J.
|0 P:(DE-Juel1)176427
|b 20
773 _ _ |a 10.1038/s41467-021-22472-x
|g Vol. 12, no. 1, p. 2191
|0 PERI:(DE-600)2553671-0
|n 1
|p 2191
|t Nature Communications
|v 12
|y 2021
|x 2041-1723
856 4 _ |u https://juser.fz-juelich.de/record/892610/files/s41467-021-22472-x.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:892610
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)187394
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 9
|6 P:(DE-Juel1)180778
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 11
|6 P:(DE-Juel1)180633
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 15
|6 P:(DE-Juel1)176894
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 17
|6 P:(DE-Juel1)177626
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 20
|6 P:(DE-Juel1)176427
913 0 _ |a DE-HGF
|b Energie
|l Erneuerbare Energien
|1 G:(DE-HGF)POF3-120
|0 G:(DE-HGF)POF3-121
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-100
|4 G:(DE-HGF)POF
|v Solar cells of the next generation
|x 0
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Materialien und Technologien für die Energiewende (MTET)
|1 G:(DE-HGF)POF4-120
|0 G:(DE-HGF)POF4-121
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Photovoltaik und Windenergie
|x 0
914 1 _ |y 2021
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2021-02-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1040
|2 StatID
|b Zoological Record
|d 2021-02-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1060
|2 StatID
|b Current Contents - Agriculture, Biology and Environmental Sciences
|d 2021-02-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2021-02-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2021-02-02
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2021-02-02
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-02-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2021-02-02
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2021-02-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2021-02-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2021-02-02
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b NAT COMMUN : 2019
|d 2021-02-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2021-02-02
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2021-02-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2021-02-02
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a IF >= 10
|0 StatID:(DE-HGF)9910
|2 StatID
|b NAT COMMUN : 2019
|d 2021-02-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2021-02-02
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Peer review
|d 2021-02-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-02-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0320
|2 StatID
|b PubMed Central
|d 2021-02-02
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-11-20140314
|k IEK-11
|l Helmholtz-Institut Erlangen-Nürnberg Erneuerbare Energien
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-11-20140314
981 _ _ |a I:(DE-Juel1)IET-2-20140314


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21