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ABSTRACT Cascades of failures are among the biggest threats to supply networks such as power grids:
An initially failing element may trigger the failure of other elements, thereby eventually causing the entire
network to collapse. Here, we analyse the statistics of Line Outage Distribution Factors (LODFs), which
describe the rerouting of electric power flows after a line failure. In particular, we demonstrate that absolute
LODFs are approximately log-normally distributed throughout network topologies. We then illustrate that
this log-normal distribution of redistribution factors results in a heavy tailed distribution of outage sizes
in a simplified, stochastic cascade model over a certain range of parameters. This cascade model extends
previous stochastic cascade models by adding more realistic redistribution mechanisms as well as including
more realistic initial trigger events. Our results demonstrate that the statistics of redistribution factors is a
fundamental trait throughout different networks and presents a possible explanation for the vast occurrence
of heavy tailed distributions in real-world reanalyses of power outage sizes.

INDEX TERMS Transmission lines, network theory (graphs), graph theory, cascading failures, transmission

line outages, power grids.

I. INTRODUCTION

In our daily lives, we depend on a reliable supply with electri-
cal power. Large scale power outages can have a catastrophic
impact on society, economy and other infrastructure networks
as recent examples demonstrate [1], [2]. Remarkably, empir-
ical reanalyses of historic power grid blackouts have revealed
the scale-free nature of outage sizes: large scale outages are
not rare, but the size of outage sizes decays algebraically
[3], [4]. The reason for this scaling is still not fully under-
stood, but different possible explanations have been put
forward [5]-[8].

Blackouts are in most cases initiated by the failure of a
single or only very few transmission or generation elements
which cause the failure of other elements and so forth —
eventually leading to a cascade of failures where a large part
of the system breaks down [9]. A single step in a cascade
is essentially governed by two variables: The initial flows
in the network and the flow rerouting in the network after
a failure. The latter may be compactly summarised in terms
of the Line Outage Distribution Factors (LODFs) which arise
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from a linearisation of power flows and relate the initial flows
to the flow changes after a failure [10]. Remarkably, LODFs
are a purely topological property of a network, i.e. they do
not depend on the power injections. Thus, a key indicator of a
given network’s resilience is their distribution. Previous work
on spatial aspects of flow rerouting has mainly focused on a
microscopic perspective on link failures, studying different
properties of individual failures such as the distribution of
flow changes after line outages [11] with a particular focus
on the decay with distance [12]-[16]. Here, we adopt a statis-
tical perspective on the distribution of LODFs for an entire
network which yields a structural indicator of a complex
network’s resilience with respect to perturbations.

The access to real-world power grid data such as network
topologies is limited due to the sensitive nature of the infor-
mation — power grids are considered to be a critical infras-
tructure. However, recent efforts increase the availability of
openly available power grid datasets that typically rely on
OpenStreetMap [17]-[19]. Different synthetic power grids
that are based on real-world grids have been designed for
power flow studies [20]-[24]. In addition to that, different
algorithms have been developed to generate synthetic net-
works that display the main topological properties of real
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world power grids [25]-[29]. Besides, several studies have
addressed the statistical properties of real world transmission
grids and the corresponding transmission lines [30].

In this article, we analyse the distributions of LODFs for
various real-world and synthetic grids systematically. To the
best of our knowledge, this is the first systematic analysis of
the distribution of LODFs for different real-world and syn-
thetic transmission grids. In fact, the distribution of LODFs
is purely based on the network topology and may thus be
considered as a network observable, similarly to the degree
distribution or betweenness measures that have been consid-
ered in previous analyses of power grids [26], [31], [32].

II. LINEAR FLOW NETWORKS AND LINE OUTAGE
DISTRIBUTION FACTORS

In most cases, cascades of failures are well-described by a
linearised approach to the power flow equations known as the
DC approximation. Here, we briefly review the mathematical
aspects and the derivation of LODFS using a more general
language that applies to power grids as well as to other types
of networks to facilitate a translation of our results.

A. THEORY OF LINEAR FLOW NETWORKS

Consider a linear flow network on a simple, connected graph
G(E, V) with M = |E| edges and N = |V| vertices. Assume
that each edge ¢ = (j, k) in the graph is assigned a weight
by € R and each node has a potential 9, € R,n €
{1,...,N}. In a linear flow network, the flow F, € R, £ €
{1,..., M}, onanedge ¢ = (j, k) connecting nodes j, k € V
scales linearly with the potential drop along the line such
that [14]

Fo = by - (9 — D). (nH

Next, we assign an orientation to each edge £ = (j, k) in
the graph and say that the edge is oriented from node j to
node k such that F; > 0 is a flow from node j to node k
and a negative sign indicates a flow in the opposite direction.
This setup applies for example to power transmission grids
[14], [34], where F; is the flow of real power on a trans-
mission line £, %, denotes the nodal voltage phase angle and
by is the line susceptance. This corresponds to the so-called
‘DC approximation’ of AC power flows that typically offers
a good description of the power flows if lines are lossless and
not too heavily loaded [34]. An equivalent description is also
used for hydraulic and vascular networks [35], where Fy is
the flow of water or nutrients, ¥, is the local pressure and b,
the edge’s capacity.

Now assume that each node m has an in- or outflow p,,.
Then the edge flows are related to the inflows by Kirchhoft’s
current law

pn= Y_ Fu. )

Lel’(m)

Here, I'(m) C E(G) is the set of all edges connected to
vertex m with each edge sorted according to its orientation.
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Combining Egs. (1) and (2), we arrive at the following set of
equations

pm=Y_ be-On— ), 3)

Lel’(m)

where the sum runs again over all edges ¢ = (m, k) whose
start point or terminal end is node m. As a next step, we can
define the graph Laplacian L € RN >N that encodes the
topology of the graph in a compact form and is defined by
its entries as follows [36]

—by if ¢ =(,k) € E(G)
Li =1 D pergyom 7=k )
0 otherwise.

We will see in the following that this matrix is crucial to
describe link failures in linear flow networks. To write the
above set of equations more compactly, we define a vector of
potentials # = (#,...,9x)" € RY and a vector of in- and
outflows p = (p1,...,pn)| € RN to write Equation (3)
compactly [14], [37]

L? =p. 5)

The nodal potentials are thus subject to a Poisson-type equa-
tions. To solve for the vector of potentials, this equation needs
to be inverted. However, the Laplacian always has a vanishing
eigenvalue A1 = 0 and is thus not invertible. This problem
is typically overcome by making use of the matrix’s Moore-
Penrose pseudoinverse L' which has properties similar to the
actual matrix inverse [38], [39].

B. SINGLE LINK FAILURES IN LINEAR FLOW NETWORKS
Assume that a single link e fails that carries the initial

flow Féo). Then the flow change AF, on another link £ can
be calculated as follows [10], [14]

AF; = LODF; ,F©,

The factor LODF, . connecting the initial flows and the
flow changes is known as Line Outage Distribution Factor
(LODF) and measures the change in flow on a link ¢ when a
link e fails. Thus, the flow F; on a link £ after the failure may
be calculated as

Fo=F9 4 AF, = F® 4 LODF, F©. (©6)

Summarising the LODF for all possible failing links e and all
possible monitoring links ¢, we can define an LODF matrix,
LODF € RM*M_ Its entries may then be expressed in a
purely topological manner [10], [14]

q'L'q,

LODF; , = by———5 .
1 — begiLiq,

(N

Here, e = (r, s) € E(G) is an edge, q, € RV is a vector with
entry one at position r and entry minus one at position s and
t denotes the transposed vector. The LODF assumes values
between minus one and one, LODF; , € [—1, 1], 1i.e. only the
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amount of flow that was present initially may be redistributed.
The diagonal elements are typically set to minus one for con-
sistency, i.e. LODF,; ; = —1, V¢ € E(G). Furthermore, there
are several cases where the LODF vanishes, for example if
two parts of the network are only connected via a bridge [14],
[40] or via a network isolator [37], [41].

Ill. LOGARITHMIC LODFs ARE APPROXIMATELY
NORMALLY DISTRIBUTED
In this section, we analyse the distribution of LODFs for real-
world and synthetic power grids in detail. We use the term dis-
tribution synonymous to the probability density function here
and in the following. Since the absolute LODFs are bounded
by unity, they may be naturally studied on a logarithmic scale.
For this analysis, we neglect the cases where the LODF van-
ishes since these are typically rare in large networks. We also
do not consider the diagonal elements LODF; ; = —1. The
distribution of LODFs is mainly governed by two factors:
Firstly, the distribution of edge weights b which we denote by
Pp in the following. Secondly, it is governed the distribution
of entries of the Laplacian matrix’s Moore-Penrose pseudoin-
verse LT which we denote by P;:. Importantly, the former
distribution is in some sense incorporated into the latter one
since the off-diagonal elements of the Laplacian matrix are
again (summed) elements from the distribution of weights Pp.
The study of the elements of random matrices has led
to the development of random matrix theory. Typically, the
distribution of these elements is analysed using its eigenval-
ues [42]. On the other hand, research has addressed the spec-
tra of complex networks as encoded in the graph’s adjacency
matrix or its Laplacian matrix [43]-[45]. The Moore-Penrose
pseudoinverse L' - as the actual inverse - has eigenvalues
inverse to the eigenvalues of the Laplacian L except for the
zero eigenvalue. Thus, diagonalizing both matrices using the
eigenvalues A1 = 0, A2, ... Axs ordered by magnitude and

corresponding eigenvectors ¥1 = 1/~ N, vy, ..., Vpr of the
Laplacian matrix, we may write [39]
00 ... 0 v
=T
L=Gi. |2 e
2T
0 0 ... 0 v
—1 -T
L= o] 02 o O
1] \7

Understanding the spectrum of the graph Laplacian and thus
the topology of the underlying graph is key to understanding
the spectrum of the pseudo-inverse L' and thus the distribu-
tion of LODFs. In addition to that, the Laplacian eigenvalues
determine the dynamical properties of power grids [46].

A. DISTRIBUTION OF LINE SUSCEPTANCES
In this section, we analyse the distribution of transmission
line susceptances Pp. It has been demonstrated that the
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distribution of line reactances x, follows approximately an
exponential distribution Py (x,) = e Me by making use of
the Kullback-Leibler divergence [30]. The DC approximation
of the power flow is based on the assumption that transmis-
sion lines are purely inductive [34]. In this case, the line
reactance and susceptance are related by b, ~ —x,_ Iie we
can obtain the distribution of line susceptances by taking the
inverse distribution of the distribution of line reactances P, .
We will make use of this fact to compare the distribution of
LODFs in networks with unit line susceptances and sucep-
tances following an inverse exponential distribution.

B. DISTRIBUTION OF INITIAL LINE LOADINGS
Here, we consider the distribution of line flows as it appears
in a dispatch of the open energy system model ‘PyPSA-EUR’
which models the European energg system [33]. To this end,
we evaluate the absolute flow |F l( )| on a line 7 and divide it
by the maximal flow F;"** on the line to evaluate the relative
loading
()

l Fil’l'ldX ( )
We then examine the statistics of relative loadings for a
dispatch spanning an entire year in hourly resolution. The
network has 4428 lines and 3037 nodes and, as a result,
there is a detailed statistics of relative loadings. For the given
dataset, the flow on a line is limited to 80% of the maximal
flow to incorporate a security constraint.

We find that the relative loadings are approximately expo-
nentially distributed, i.e. they are described by the probability
density function PL(LO) = re M (see Figure 1). The
maximum likelihood estimator for an exponential distribution
is calculated as

A= (L) )

where (-) denotes the average. For the empirical distribution
of line loadings in ‘PyPSA-EUR’, we observe an estimate of
A ~ 5 with small monthly variations.

C. DISTRIBUTION OF LODFS

To preprocess the data for evaluating the logarithmic distri-
bution, we first create the set of all pairs of edges for which
the LODF has non-zero entries

L ={l,k € E(G)|LODFy, # 0 A £ # k}.

In Figure 2, we present the distribution of LODFs for two
different topologies: The MATPOWER test case ‘2736sp’
that represents the Polish power grid during peak conditions
in summer of 2004 [21] (top row) and a 100 x 100 square
grid with unit line susceptances (bottom row). Whereas the
distribution of logarithmic LODFs closely corresponds to a
log-normal distribution (a,d) with significantly stronger tails
in both cases (b,e), the distribution of Laplacian eigenvalues
differs greatly for the two topologies (c,f). Thus, there is
a surprising similarity between the distribution of LODFs
for vastly different topologies. Here, Gaussian fits are based
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FIGURE 1. Distribution of absolute line loadings in a high-resolution energy system model. (a) We evaluate the magnitude of the relative line loadings
L) over a year of demand and generation patterns in hourly resolution occurring in the European energy system model ‘PyPSA-EUR’ [33] described in
table 1. The dispatch is calculated via an optimal power flow algorithm including a security margin, |L,§0 | < Lthresh — g8, as a proxy for N — 1 security
(cf. Eq. (17)). The probability density function is well approximated by an exponential distribution with parameter i ~ 5.26 estimated using the maximum
likelihood estimator in Eq. (9). (b,c) The given dataset contains a weak seasonal effect, displaying slightly higher relative loading in winter months (b)
than in summer months (c) that result in a steeper exponent of the distribution of relative loadings in the latter case.

(b) 10° (c)

—— Data

Gaussian//\ 0.6

(a)
Gaussian fit
(0.3 W LODF 2736sp

107!

o) o) )
0.2 $ 02 g 0-4
s S 107= ' 3
g g g
“ S} [St

0.1 1073 0.2

;_// 2 —4 _
0800 =75 —50 —25 00 P00 —75 —50 -25 00 Yo 0 2 4
(d) log,(|LODF|) (e) 10 log,(|LODF|) (f) 03 log;y(AL)
504 >107 0.2
S Gaussian fit S S
% I | ODF square % %
0.2 =107 =01
—— Data
Gaussian
—6
0'071()‘0 -75 =50 =25 0.0 10710.0 —7.5 —5.0 —2.5 0.0 0.0 0 2 4 6 8
logy(|LODF|) log;(|LODF|) AL

FIGURE 2. The distribution of absolute LODFs is approximately log-normal for both real-world and artificial network structure. We analyse the
distribution of LODFs and Laplacian eigenvalues for (a-c) the real-world power grid “2736sp’ that corresponds to the Polish power grid during summer
peak 2004 with edge weights representing the link susceptance and (d-f) a regular square lattice of size 100 x 100 with unit edge weights. (a,d) The
distribution of LODFs (dark blue histogram) follows approximately a log-normal distribution (light blue) except for the tails at low values for both the
“2736sp” grid (a) and the square grid (d). (b,e) The heavy tails (dark blue) - as compared to the Gaussian distribution (light blue) — become clearly visible
when analysing the distributions on a log-log scale. (c,f) Even though the distributions of LODFs have a similar shape for both networks, the spectra of
the Graph Laplacian differ significantly between the two topologies. For the real-world grid, the distribution is clearly bimodal and spreads over 4 orders
of magnitude - note the logarithmic x-scale. In contrast, for the regular lattice, the distribution differs considerably and spans only 1 order of magnitude.
Thus, although both quantities are purely topological, the similarity in the log-normal distribution of LODFs cannot easily be understood in terms of the

Laplacian spectrum alone.

on the maximum likelihood estimates of the mean upn where X; are the realizations of the random variable “X”’

and variance O’I%N for a log-normal distribution which are under consideration.

given by [47] To further examine the characteristics of the distribution

of LODFs, we systematically evaluate different moments

. Zf\; , log(X)) of the underlying distribution for different grids [48]. First,
MLN N ) (10) we calculate the mean of the absolute logarithmic LODFs
o YN (togx) — fww)’ 1= 3 log(LODF ). (12)
9IN = N ’ (i I£] kel
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FIGURE 3. Statistical properties of the logarithmic LODF distribution and the network structure for synthetic grids, real world grids and random graphs.
We analyse 11 random graphs, 4 synthetic grids and 20 test case grids that are inspired or correspond to real world grids (see tables 1 and 2 for details).
(a.,b,c) Attributes of the network topologies underlying the grids: The topological attributes span a wide range in terms of their number of nodes N/, their
number of edges M and their average degree (k). (c,d,g,h) We analyse the first, second, third and fourth moment (see sec. I11) of different real-world,
random and synthetic grids (see tables 1 and 2). Although the grids are of different sizes (d) and different connectivities (g h), the statistical properties
are similar: the (logarithmic) mean lies approximately at ;. ~ —4, the variance around o2 ~ 2 except for the random grids which are much more regular,
the skewness y, is slightly negative and the excess kurtosis « positive for almost all grids, indicating that large deviations are more likely than for
Gaussian distributions. Test cases are taken from Refs. [20]-[24], [33] (see table 1 for details).

Second, we calculate the variance o2
1
o’ = il > (log(ILODF . |) — 11)*. (13)

kel

To specifically compare the distributions to log-normal dis-
tributions, we also calculate the normalized third and fourth
moment, namely the skewness y;

1 log(JLODF, ,|) — i\
v = — og(] tel) — 1 , (14)
I£] o
kel

and the excess kurtosis
1 log(|[LODF — M

= > -

L.kel

The skewness vanishes for a Gaussian distribution due to its
symmetry. The excess kurtosis measures the deviation from
a kurtosis of three observed for the Gaussian distribution and
indicates if rare events happen more (¢ > 0) or less (k < 0)
frequently than for a Gaussian distribution [49].

Finally, we make use of another indicator that is related
to the upper tail of the distribution of LODFs and gives a
measure of a grid’s vulnerability: We calculate the relative
number of LODFs exceeding a threshold of 0.1

|{¢, k € L|[LODF; | > 0.1}
MM = 1) ’

and refer to this measure as the ‘strongly affected links’. The
measure may be interpreted as the probability that the failure
of a randomly chosen link results in the increase of the flow

(16)
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on another randomly chosen link by more than 10% of the
flow carried initially by the failing link.

We analyse these properties of the distribution of loga-
rithmic LODFs for different power grids in Figure 3(e-h).
In particular, we consider test case grids that are based on
power system test cases and synthetic grids that are cre-
ated using a synthetic power grid algorithm (see Table 1 in
the Appendix). To get a better statistics and benchmark the
results, we also consider random graphs that are generated
either from regular grids or random network models (see
Table 2 in the Appendix).

All grids are similar in terms of their average degree (k)
except for the random graphs that — in some cases — display a
much higher number of edges which results in larger average
degrees (see panels (a-c)). The mean of the logarithmic abso-
lute LODFsis &t = —3.91 for all grids tested and the variance
is 02 = 1.73, except for the random graphs where a much
lower value of a variance close to unity may be observed. This
is likely due to the fact that the random graphs considered here
are in most cases very regular in terms of the graph degree and
thus much more homogeneous than realistic power grids. The
skewness is negative for almost all distributions tested with
a mean skewness of 1 = —0.26 evaluated over all grids,
indicating distributions with a peak located at values larger
than the mean value. For the excess kurtosis, we observe
almost exclusively values larger than zero, in most cases
exceeding unity, with a mean of ¥ = 0.60. This indicates that
almost all LODF distributions have heavier tails than a log-
normal distribution. In terms of the network vulnerability as
measured by the strongly affected links, we observe a mean
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of 9.5 - 1073 with the synthetic grid models displaying a
much higher vulnerability with a mean of 2.5 - 1072, Thus,
we conclude that the distribution of LODFs displays a high
degree of similarity for different power grids and synthetic
networks. In Figures 7,8,9 and 10 in the Appendix, we show
the actual statistics of LODFs for 24 test case grids and
synthetic grids, for which aggregated statistical properties are
summarized in Figure 3.

IV. APPLICATION: A CASCADE MODEL WITH
LOG-NORMAL LOAD REDISTRIBUTION

Based on our finding that LODFs are log-normally distributed
over a wide range of topologies, we will now discuss a sim-
ple probabilistic cascade model that incorporates this effect.
To this end, we will study a modification of the ‘CASCADE’
model due to Dobson et al. [7], [8].

A. THE CASCADE MODEL AND A POSSIBLE EXTENSION
Consider a simple network consisting of N components.
Initially, each component j is assumed to have a load LY
that is smaller than its maximal load L™**. If a component
exceeds its maximal load, the component breaks down and
a redistribution mechanism is triggered that distributes the
load to the other components in the network. These may in
turn trigger further breakdowns, resulting in a cascade of
breakdowns that eventually stops if the network has broken
down entirely or if no further overloads occur.

In the original setup by Dobson et al., the initial loads
L© are drawn from a uniform distribution, i.e. L@ ¢
U(Lmin | pthreshy where L™ is the minimum loading in the
distribution and Lresh < pmax j¢ the threshold loading,
potentially incorporating a security margin to the maximal
loading L™#*. Redistribution after failures is incorporated by
increasing the load on all components in the network by a
constant addend D;. Furthermore, the cascade of failures is
triggered by an initial shock that increases the load on all
components by an added Dy. Thus, the loading on a com-
ponent i in a network after the failure of M components is
calculated as

LY =19 + Dy + MD;.

Choosing critical values of these parameters that depend on
the system size N, Dobson et al. demonstrate that this model
yields a power law of the number of components failing —
in close correspondence with power laws of blackout sizes
observed empirically in historic power blackout sizes [3].

Inspired by the redistribution of real power flow after line
failures in power transmission grids as described in Eq. (6),
we suggest extending this mechanism as follows:

1. Security margin and distribution of line loadings:
Typically, real-world power grids are operated using the N — 1
security criterion which means that upon the failure of any
transmission or generation element, no other line becomes
overloaded. This is approximately taken into account in the
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Algorithm 1 Stochastic cascade model
% Randomly choose initial trigger element k €
{1,..., N} and add it to set of failing components C
C <k
repeat
has_overloads < 0
% Redistribute load from all failed components:
for all remaining components do
9% Update Vie {1,...,N}, i ¢ C:
L < L;+ ZkeC(_l)m‘SLk’
% Reset set of current failures and remove failed
components
C<{}
if |[L;| > L™ then
Add i to set of current failures C
has_overloads < 1
end if
end for
until has_overloads = 0

model by a security margin
Lthresh — ¢ . [ max (]7)

which limits the maximal initial loading to a share ¢ € [0, 1]
of the maximal L™#*. In the following, we simply set
L™ =1 for all components such that our model emulates
relative loading of components.

We then consider either a uniform distribution of com-
ponent loadings as in the original ‘CASCADE’ model such
LO ¢ gf(—pthresh | threshy "o an exponential distribution that
we have found empirically in a large-scale energy system
model (see Sec. III-B). In the latter case, we initially draw
all loadings from an exponential distribution PL(LO) =
re M with o ~ 5. If the initial loading on an element
i exceeds the threshold value, we simply reset it with the
threshold value Ll.(o) = [ thresh,

2. Redistribution after failures: Inspired by our findings on
log-normally distributed LODFs, we adopt a redistribution
scheme after failures in the spirit of the redistribution of real
power flow on transmission lines as introduced in Eq. (6).
Assume that the component k£ with initial load L,EO) fails.
We suggest updating the load on another component i by

(1 0) ) .
LV =10 4 (—1y"er?, Vi#ke{l,...,N}. (18)

Here, £ € Lognormal(u, o) is drawn from a log-normal
distribution with mean p and standard deviation o and m
assumes the values one or zero with equal probability to
model the randomly chosen sign. This update rule thus corre-
sponds to a probabilistic version of the update rule (6) if we
insert the relative loadings (see Eq. (8)) and assume that all
lines have the same maximal loading. Thus, our model adopts
the redistribution scheme observed in power transmission
grids in the DC approximation and takes into account the fact
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FIGURE 4. Distribution of outage sizes for different random redistribution models. We show the likelihood P(N*) of an outage of size N* for (a) the
CASCADE model, (b) the log-normal redistribution model with uniform initial loads and (c) with exponentially distributed initial loads. The effective
parameters in the CASCADE model are chosen to be consistent to the parameters in the other models or their averages, respectively (see Eq. (19)).
Colour code (from dark blue to light blue) represents increasing values of redistribution constant D; for the CASCADE model (a) and variance of the
Gaussian distribution of logarithmic redistribution factors o2 for the other models (b,c). While the CASCADE model displays an abrupt transition point at
which either less or all components in the system fail, the transition is smoother for the suggested models. Note the peak in the histogram at the system
size N = 1500 for the CASCADE model (a), which indicates that the entire system fails with a high likelihood. The system considered here has N = 1500
elements for all panels, the mean of the distribution is set to x = —5 for panels (b) and (c) and parameters for CASCADE model are calculated using the
parameters shown in b) and Egs. (19) and (20). Grey dotted lines represent least-square fits of linear functions on the intermediate range of failure sizes
performed on the log-log scales for the two top curves along with the resulting scaling exponent. The range of parameters is chosen such that it agrees

with typical values found in statistics of LODFs in test case and synthetic grids (see Table 1).
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FIGURE 5. Distribution of outage sizes for different random redistribution models. We show the exceedance P(N* > N) which is the likelihood that an
outage will result in the failure of N or more elements. The distributions shown here are the same as in Figure 4.

that LODFs are log-normally distributed throughout different
topologies.

3. Initial trigger event: In contrast to the ‘CASCADE’
model, we assume that the initial event triggering the cascade
of failures is the failure of a single element as well, i.e. the
cascade is triggered by the same mechanism that makes it
propagate. This corresponds to the mechanism for cascading
failures in real power transmission grid, where large scale
cascades are often triggered by a single link failure that
triggers other link failures and so forth [9], [14], [15].

We summarise this cascade model in the Algorithm 1.

The proposed model thus incorporates crucial aspects of
flow rerouting and cascading failures in power flow models
while remaining entirely probabilistic and, in this regard,
extending previous models. Similar to the ‘CASCADE’
model, this has the advantage that there is no need to
consider a particular grid topology and allows approach-
ing the statistics of cascading failures purely from a prob-
abilistic viewpoint. Thus, the model fills a gap between
realistic, but non-probabilistic models and purely proba-
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bilistic models that are ruled by less realistic redistribution
schemes [4], [5S0]-[52].

B. HEAVY TAILS OCCUR OVER WIDE RANGE

OF PARAMETERS

Outage sizes in empirical data have been demonstrated to
have heavy tails [53]. Different explanations for this scaling
law have been put forward, ranging from an interpretation
of the power system being in a critical state [4], [7] to
relating the power law to power laws in city size distri-
butions [5]. A recent analysis of the probability distribu-
tion of the number of customers affected per outage in the
U.S. has found a load dependency of the scaling exponent
with typical values ranging from —2.1 to —2.8 [54]. Here,
we demonstrate that power laws of outage sizes occur over
a wide range of parameters in our extended CASCADE
model. Our model incorporates essential properties of fail-
ure cascade in linear flow models while being entirely
probabilistic.
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TABLE 1. Distribution of topological parameters and moments of the logarithmic LODF distribution for 24 different test grids. We refer to the 20 first grids
as ‘test case grids’ since they are mostly based on power system cases except for the two grids taken from PyPSA-Eur and to the latter four as ‘synthetic
grids". Test grids are either taken from the publicly available test case archive of MATPOWER [20]-[22] or taken from the University of Washington power
systems test case archive [24]. The Scandinavian grid data and the central European topology where extracted from the open energy system model
PyPSA-Eur [33] which are based on the publicly available network data by the transparency platform of the European Network of Transmission System
Operators (ENTSO-E). ‘case_ACTIVSg’ are synthetic power grids inspired by real-world North American power grids [23].

Test case ‘ Mean i@ Variance 02  Skewnessy;  Kurtosis &  Number of nodes /' Number of edges M Average degree (k)
IEEE casel18 -2.762 1.698 -0.090 -0.707 118 179 3.034
casel45 -3.481 2.631 -1.002 1.407 145 422 5.821
IEEE case300 -3.060 2.069 -0.401 -0.040 300 409 2.727
casel354pegase -3.544 1.431 0.012 0.042 1354 1710 2.526
case1888rte -3.680 1.689 -0.330 0.604 1888 2308 2.445
casel951rte -3.737 1.791 -0.412 0.827 1951 2375 2435
case2383wp -3.816 1.584 -0.324 1.072 2383 2886 2422
case2737sop -3.875 1.810 -0.651 1.329 2737 3497 2.555
case2746wop -3.868 1.790 -0.651 1.398 2746 3505 2.553
case2848rte -4.081 1.894 -0.157 0.215 2848 3442 2417
case2868rte -4.157 2.110 -0.429 1.012 2868 3471 2421
case2869pegase -5.461 4.982 -0.466 -0.200 2869 3968 2.766
case3012wp -3.841 1.574 -0.261 0.882 3012 3566 2.368
case3120sp -3.893 1.668 -0.293 0.827 3120 3684 2.362
case3375wp -3.907 1.627 -0.382 1.196 3374 4068 2411
case6468rte -4.702 1.713 0.055 0.474 6468 8065 2.494
case6470rte -4.691 1.689 0.076 0.459 6470 8066 2.493
case9241pegase -6.366 5.117 -0.306 -0.410 9241 14207 3.075
Scandinavia_PyPSA -3.709 4.412 -0.623 -0.310 272 373 2.743
Central_Europe_PyPSA -4.502 2717 -0.371 -0.057 2440 3494 2.864
case_ACTIVSg200 -2.077 1.057 -0.441 0.065 200 245 2.450
case_ACTIVSg500 -2.653 1.323 -0.252 -0.032 500 584 2.336
case_ACTIVSg2000 -4.100 1.754 0.143 -0.126 2000 2667 2.667
case_ACTIVSgl0k -4.958 1.780 0.104 0.382 10000 12217 2.443

TABLE 2. Distribution of topological parameters and moments of the logarithmic LODF distribution for different regular and random graphs. Link weights
were either set to unity or calculated based on the inverse parameters of an exponential distribution with A = 0.02. To produce the Voronoi lattics,
we distributed 2000 points randomly in the unit square [0, 1] x [0, 1] and calculated their Voronoi tessellation. For the Erd6s—-Rényi (ER) random graph we

used a connection probability of p = 0.2.

Test case ‘ Mean 1 Variance 02 Skewnessy;  Kurtosis x  Number of nodes N~ Number of edges M Average degree (k)
ER graph - unweighted -3.819 0.565 -0.335 0911 220 4766 43.327
Square grid - unweighted -3.584 0.663 -0.170 0.947 2500 4900 3.920
Square grid - weighted -3.582 0.715 -0.150 0.978 2500 4900 3.920
Triangular grid - unweighted -4.451 1.595 -0.344 -0.164 2626 7625 5.807
Triangular grid - weighted -4.514 1.725 -0.330 -0.078 2626 7625 5.807
Delaunay lattice - unweighted -3.909 0.509 0.071 1.649 3000 8974 5.983
Delaunay lattice - weighted -3.914 0.515 0.079 1.594 3000 8975 5.983
Voronoi lattice - weighted -3.469 0.649 -0.062 1.074 3973 5947 2.994
Voronoi lattice - unweighted -3.431 0.540 -0.008 1.491 3976 5953 2.994
Hexagonal grid - unweighted -3.558 0.601 -0.126 1.284 5200 7699 2.961
Hexagonal grid - weighted -3.575 0.681 -0.162 1.135 5200 7699 2.961
To be able to compare the proposed model to the a small value
CASCADE model, we choose the redistribution parameter resh o
. . max res
D in the CASCADE model as the expected value of the Do := L™ - L")+ E <|2 L |) ; (20)

product probability distribution between initial loadings L©
and redistribution factors £, such that

D =E (|2 : L(0)|) . (19)

If alarge number of components fails, we thus have the formal
equivalence in the update equations

M
1 0 0 0
LV =10+ 1e- L0~ L+ MD,.
k=1

Furthermore, we choose the initial trigger parameter Dy to
be equal to the initial security margin to which we add
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since below this value, the initial trigger event cannot result
in a cascade and this value simulates a behaviour close to
criticality, where power-laws of cascade sizes have been
observed.

In Figure 4, we compare the resulting cascade sizes
obtained for a large number of simulations of the model with
the parameters indicated. We analyse the likelihood P(N*)
that a given number of components N* fails, calculated over
108-10° realisations of the initial conditions and randomly
chosen trigger elements. We consider (a) the CASCADE
model, (b) the stochastic load redistribution model suggested
at the beginning of this section IV with uniform initial
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FIGURE 6. Distribution of outage sizes in the stochastic load redistribution model for systems of different sizes. We compare the likelihood P(N*) of an
outage of size N* for systems with initial element loadings drawn uniformly (left) and exponentially (right) for systems with different number of
elements (a-e). We fix the mean of redistribution factors to 1 = —5 and choose the range of variances o2 for each system size such that power laws of
outage sizes occur. The range of parameters considered here matches typical values found in redistribution factors for synthetic and test case grids
(see Table 1).
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FIGURE 7. Distribution of absolute LODFs for the first six test grids listed in table 1. We plot the frequency of occurence of logarithmic absolute LODFs
and a Gaussian fit (see sec. I1I) with a linear y-scale (left) and a logarithmic y-scale (center). In most cases, the frequency of occurence of logarithmic
absolute LODFs is well-approximated by the Gaussian fit. Furthermore, we plot the frequency of occurrence of absolute LODFs (right).

loadings and (c) with exponential initial loadings. Typical
values for the log-normal statistics of redistribution factors
used in the stochastic load redistribution model are extracted
from the parameters obtained for test case and synthetic grids
listed in Table 1 and discussed in section III-C: We choose
a mean of 4 = —35 which is in the typical range of u €
[—3, —6] observed for the logarithmic mean and a variance of

0% e [1.3,1.5] which also matches the typical range of
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0% € [1,3] observed for actual grid datasets. In Figure 6
in the Appendix, we analyse the sensitivity of these results
for varying system sizes and varying variance o> chosen
in the critical range. Note that values differing from the
critical range will result in either only a small share of the
components or the entire system failing due to a limited
system size. Furthermore, we fix the security margin on the
relative loading to ¢ = 0.7. Note that this “70%-rule” is
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FIGURE 8. Distribution of absolute LODFs for the sixth up to the twelfth test grids listed in table 1. We plot the frequency of occurence of
logarithmic absolute LODFs and a Gaussian fit (see sec. 11l) with a linear y-scale (left) and a logarithmic y-scale (center). In most cases,
the frequency of occurence of logarithmic absolute LODFs is well-approximated by the Gaussian fit. Furthermore, we plot the frequency of

occurrence of absolute LODFs (right).

a common way to ensure approximate N — 1 security also
when operating and modelling real-world power transmission
grids [55]-[57].!

I Note that in the dataset shown in Figure 1 the security margin is set to
pthresh _ 8 5 e 80% of the maximal loading. We make use of this dataset
to estimate the scaling exponent since flows are not strongly affected by the
threshold in this case which would otherwise result in a peak at LO =07
as an indication of positive shadow prices, i.e. a possible economic optimum
with higher line flows [58]. Thus, we estimate the exponent from this
distribution to be able to use the entire range of loadings for estimation of
the scaling exponent.
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Whereas the CASCADE model (a) displays a rather abrupt
transition point for which either fewer components or the
entire system fail, the curves are smoother for all parameters
in the models suggested here. In particular, the curves in
the suggested models are more flat for all parameters under
consideration indicating a power law over a wider range of
parameters. Thus, we conclude that our model can reproduce
essential features observed in the CASCADE model while
presenting power laws over a wide range of parameters. For
the critical cases where power laws occur, we find that the

VOLUME 9, 2021



F. Kaiser, D. Witthaut: Universal Statistics of Redistribution Factors and Large Scale Cascades

IEEE Access

(@) 20
. Gaussian fit = Data ~ B case3012wp
0.3 mem case3012wp p Gaussian /
z , 2102 z
b5 0.2 5 ) b5
g 5 gl
04 E107 &
. —a —G
04012.5 —-10.0 =75 —5.0 —2.5 0.0 10 —-10.0 =7.5 —5.0 —2.5 0.0 0 0.0 0.2 0.4 0.6 0.8
log,,(|LODF|) log,,(|LODF|) |LODF|
(b) 10" 20
Gaussian fit = Data E— B case3120sp
0.3 : S
B case3120sp Gaussian /
> g10° N g
o ().2 o | 7}
g 5 gl
S0 E107 &
—— . —G
()£]12.5 —-10.0 =75 —5.0 —2.5 0.0 10 —-10.0 =7.5 —5.0 —-2.5 0.0 0 0.0 0.2 0.4 0.6 0.8
log,,(|LODF|) log,,(|LODF|) |LODF|
(<) 20
. Gaussian fit _, Data — B case3375wp
0.3 B case3375wp 7 10 Gaussian / N
z , 7 N, @
c < c
c0.2 g \ R0
g g1 g
<01 - -
0.0, B ~ 107° ‘ - - 0 ) .
=125 —-10.0 =75 —5.0 —-2.5 0.0 —-10.0 =7.5 —5.0 —-2.5 0.0 0.0 0.2 0.4 0.6 0.8
log,,(|LODF|) log,,(|LODF|) |LODF|
(d) 20
0.3 Gaussian fit 1 = Data p— I case6468rte
B case6468rte 10 Gaussian
> f > >
202 / s g
g g 210
g g10-° g
“=0.1 “ =
0095 —100 —75 50 -25 00 U 100 —75 —50 -25 00 %00 02 04 06 08
log;(|LODF) log;(|LODF) |LODF
(e) 20
0.3 Gaussian fit _; Data g B case6470rte
B case6470rte 10 Gaussian/
z g g
=0.2 < <
g g g
g g10° g
0£)12.5 —-10.0 =75 —5.0 —-2.5 U:O 107 —-10.0 =7.5 —5.0 —2.5 0.0 0 0.0 0.2 0.4 0.6 0.8
log,(|LODF) log,(|LODF) |LODF
(f) 10° 20
B case9241pegase
30. $10°? g 10
g § g
ha h = Data ha
Gaussian
—4
0'0—012.5 —-10.0 =75 —5.0 —2.5 0.0 10 —10.0 =7.5 —5.0 —2.5 0.0 0 0.0 0.2 0.4 0.6 0.8
log,,(|LODF|) log,,(|LODF|) |[LODF

FIGURE 9. Distribution of absolute LODFs for the twelfth up to the eighteenth test grids listed in table 1. We plot the frequency of occurence of
logarithmic absolute LODFs and a Gaussian fit (see sec. 111) with a linear y-scale (left) and a logarithmic y-scale (center). In most cases, the frequency of
occurence of logarithmic absolute LODFs is well-approximated by the Gaussian fit. Furthermore, we plot the frequency of occurrence of absolute

LODFs (right).

scaling exponents (dotted lines, Figure 4) matches the scaling
exponents found in empirical data with values in the range of
—2 to —3. To confirm this result, we also analyse the likeli-
hood of exceedance P(N* > N), which is the likelihood that
the outage size exceeds N elements, for the same distributions
of outage sizes in Figure 5 in the Appendix and analyse the
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scaling of the probability of outage sizes for systems with
different number of elements in Figure 6 in the Appendix.

V. DISCUSSION AND CONCLUSION

In this manuscript, we analysed the distribution of Line
Outage Distribution Factors for different real-world- and
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FIGURE 10. Distribution of absolute LODFs for the final six test grids listed in table 1. We plot the frequency of occurence of logarithmic absolute
LODFs and a Gaussian fit (see sec. I1) with a linear y-scale (left) and a logarithmic y-scale (center). In most cases, the frequency of occurence of
logarithmic absolute LODFs is well-approximated by the Gaussian fit. Furthermore, we plot the frequency of occurrence of absolute LODFs (right).

synthetic grids. In particular, we analysed how this distri-
bution changes throughout different synthetic and real-world
topologies: We found that the distribution of the magnitude of
LODFs is approximately log-normal, but additionally shows
heavy tails throughout the topologies analysed here. We made
use of this finding to introduce a stochastic load redistribu-
tion model for cascading failures that incorporates essential
mechanisms of link failures in linear flow models — such as

67376

the aforementioned log-normal distribution of redistribution
factors. The model, as a result of the log-normal distribution
of LODFs, offers a potential explanation for the widespread
occurrence of power laws in empirical data of power outage
sizes.

In contrast to microscopic studies that analyse the impact
of individual failures, our approach is a macroscopic
one, focusing on the statistics of redistribution factors.
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This approach has been demonstrated to be fruitful in many
regards. On the one hand, it allows shifting the focus from
the small-scale network structure to the vulnerability of a
network as a whole. The distribution may thus be used to
characterise network resilience, and potentially come up with
a single index for an entire network — similar to the rel-
ative number of “strongly affected links” suggested here.
Furthermore, this distribution could be used to evaluate
whether a given synthetic network topology corresponds to
realistic power grid topology in terms of network resilience.
Our results demonstrate that there is a strong correspon-
dence between the distributions of LODFs for vastly different
topologies and even random graphs. Although the calculation
of LODFs is based purely on the network topology via the
pseudoinverse of the graph Laplacian, we could not find a
simple theoretical explanation for this universal scaling.

On the other hand, a focus on the statistics of LODFs
rather than individual values allows studying cascade models
that feature more realistic flow redistribution. These models
remain entirely probabilistic and thus do not require any
assumptions about network topology. In this manuscript,
we laid a first foundation by proposing such a cascade model
that we study numerically. However, in principle, the a priori
knowledge of the statistics of loadings and redistribution
will also allow estimating cascade statistics analytically. This
could help to shed further light on empirical observation of
cascade sizes in real-world outages.

The stochastic load redistribution model for cascading fail-
ures introduced here focuses on the number of the failing
components as an indicator for the severity of blackout sizes.
This is due to the fact that the statistics of LODFs can be most
easily and most directly related to the failure of individual
components and thus outage sizes. Nevertheless, a number
of other indicators has been proposed that aim to classify
the severity of blackouts such as the number of customers
affected, the unserved power or the value of lost load to name
but a few [5], [7], [59], [60]. However, in order to extend our
model with one or several other indicators, we would have
to tune additional parameters to estimate e.g. the statistics
of power consumption, which is why we leave this question
open for future studies.

APPENDIX
TABLE OF POWER GRID TEST CASES
See Table 1 and 2.

APPENDIX
ADDITIONAL FIGURES
See Figure (5)—(10).

ACKNOWLEDGMENT

The authors would like to thank Tom Brown for providing
the power grid data and dispatch of the European power
system and Jonas Wassmer and Philipp Bottcher for helpful
comments.

VOLUME 9, 2021

REFERENCES

[1] K. Everhart and G. Molnar. (2021). International Energy Agency.
Accessed: Mar. 1, 2021. [Online]. Available: https://www.iea.org/
commentaries/severe-power-cuts-in-texas-highlight-energy-security-
risks-related-to-extreme-weather-events

Union for the Coordination of Transmission of Electricity. (2007).

Final Report on the System Disturbance on 4 November 2006.

Accessed: Mar. 1, 2021. [Online]. Available: https://www.entsoe.

eu/fileadmin/user_upload/_library/publications/ce/otherreports/Final-

Report-20070130.pdf

[3] P. Hines, K. Balasubramaniam, and E. C. Sanchez, ““Cascading failures in

power grids,” IEEE Potentials, vol. 28, no. 5, pp. 24-30, Sep. 2009.

[4] B. A. Carreras, D. E. Newman, 1. Dobson, and A. B. Poole, “Evidence

for self-organized criticality in a time series of electric power system

blackouts,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 51, no. 9,

pp. 1733-1740, Sep. 2004.

T. Nesti, F. Sloothaak, and B. Zwart, “Emergence of scale-free black-

out sizes in power grids,” Phys. Rev. Lett., vol. 125, no. 5, Jul. 2020,

Art. no. 058301.

[6] J. Lehmann and J. Bernasconi, ‘“Stochastic load-redistribution model for

cascading failure propagation,” Phys. Rev. E, vol. 81, no. 3, Mar. 2010,

Art. no. 031129.

I. Dobson, B. A. Carreras, V. E. Lynch, and D. E. Newman, “Complex

systems analysis of series of blackouts: Cascading failure, critical points,

and self-organization,” Chaos, Interdiscipl. J. Nonlinear Sci.,vol. 17,no. 2,

Jun. 2007, Art. no. 026103.

[8] I. Dobson, B. A. Carreras, and D. E. Newman, “A loading-dependent

model of probabilistic cascading failure,” Probab. Eng. Inf. Sci., vol. 19,

no. 1, pp. 15-32, Jan. 2005.

P. Pourbeik, P. S. Kundur, and C. W. Taylor, “The anatomy of a power

grid blackout—root causes and dynamics of recent major blackouts,” IEEE

Power Energy Mag., vol. 4, no. 5, pp. 22-29, Sep. 2006.

[10] A. J. Wood, B. F. Wollenberg, and G. B. Sheblé, Power Generation,
Operation and Control. New York, NY, USA: Wiley, 2014.

[11] H. Cetinay, F. A. Kuipers, and P. Van Mieghem, “A topological inves-
tigation of power flow,” IEEE Syst. J., vol. 12, no. 3, pp. 2524-2532,
Sep. 2018.

[12] S. Kettemann, “Delocalization of disturbances and the stability of AC
electricity grids,” Phys. Rev. E, vol. 94, no. 6, Dec. 2016, Art. no. 062311.

[13] D. Labavi¢, R. Suciu, H. Meyer-Ortmanns, and S. Kettemann, “Long-
range response to transmission line disturbances in DC electricity grids,”
Eur. Phys. J. Special Topics, vol. 223, no. 12, pp. 2517-2525, Oct. 2014.

[14] J. Strake, F. Kaiser, F. Basiri, H. Ronellenfitsch, and D. Witthaut, ‘“Non-
local impact of link failures in linear flow networks,” New J. Phys., vol. 21,
no. 5, May 2019, Art. no. 053009.

[15] F. Kaiser, J. Strake, and D. Witthaut, “Collective effects of link fail-
ures in linear flow networks,” New J. Phys., vol. 22, no. 1, Jan. 2020,
Art. no. 013053.

[16] J.Lehmann andJ. Bernasconi, “Current redistribution in resistor networks:
Fat-tail statistics in regular and small-world networks,” Phys. Rev. E,
vol. 95, no. 3, Mar. 2017, Art. no. 032310.

[17] W.Medjroubi, U. P. Miiller, M. Scharf, C. Matke, and D. Kleinhans, “Open
data in power grid modelling: New approaches towards transparent grid
models,” Energy Rep., vol. 3, pp. 14-21, Nov. 2017.

[18] F. Wiese, 1. Schlecht, W.-D. Bunke, C. Gerbaulet, L. Hirth, M. Jahn,
F. Kunz, C. Lorenz, J. Miihlenpfordt, J. Reimann, and W.-P. Schill, “Open
power system data—Frictionless data for electricity system modelling,”
Appl. Energy, vol. 236, pp. 401-409, Feb. 2019.

[19] J. Bennett, OpenStreetMap. Birmingham, U.K.: Packt, 2010.

[20] C. Josz, S. Fliscounakis, J. Maeght, and P. Panciatici, “AC power
flow data in MATPOWER and QCQP format: ITesla, RTE snap-
shots, and PEGASE,” 2016, arXiv:1603.01533. [Online]. Available:
http://arxiv.org/abs/1603.01533

[21] R. D. Zimmerman, C. E. Murillo-Sanchez, and R. J. Thomas, ‘“Mat-
power: Steady-state operations, planning and analysis tools for power
systems research and education,” IEEE Trans. Power Syst., vol. 26, no. 1,
pp. 12-19, Feb. 2011.

[22] S. Fliscounakis, P. Panciatici, F. Capitanescu, and L. Wehenkel, “Contin-
gency ranking with respect to overloads in very large power systems taking
into account uncertainty, preventive, and corrective actions,” IEEE Trans.
Power Syst., vol. 28, no. 4, pp. 4909-4917, Nov. 2013.

[23] A. B. Birchfield, T. Xu, K. M. Gegner, K. S. Shetye, and T. J. Overbye,
“Grid structural characteristics as validation criteria for synthetic net-
works,” IEEE Trans. Power Syst., vol. 32, no. 4, pp. 3258-3265, Jul. 2017.

2

—

[5

—

[7

—

[9

—

67377



IEEE Access

F. Kaiser, D. Witthaut: Universal Statistics of Redistribution Factors and Large Scale Cascades

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]
[48]

[49]

R. D. Christie. (1999). Power Systems Test Case Archive.
Accessed: Mar. 1, 2021. [Online]. Available: http://www.ee.washington.
edu/research/pstca/

S. Soltan and G. Zussman, “Generation of synthetic spatially embedded
power grid networks,” in Proc. IEEE Power Energy Soc. Gen. Meeting
(PESGM), Jul. 2016, pp. 1-5.

P. Schultz, J. Heitzig, and J. Kurths, “A random growth model for power
grids and other spatially embedded infrastructure networks,” Eur. Phys. J.
Special Topics, vol. 223, no. 12, pp. 2593-2610, Oct. 2014.

Z. Wang, A. Scaglione, and R. J. Thomas, “Generating statistically cor-
rect random topologies for testing smart grid communication and control
networks,” IEEE Trans. Smart Grid, vol. 1, no. 1, pp. 28-39, Jun. 2010.
R. Espejo, S. Lumbreras, and A. Ramos, “A complex-network approach to
the generation of synthetic power transmission networks,” IEEE Syst. J.,
vol. 13, no. 3, pp. 3050-3058, Sep. 2019.

Z. Wang, R. J. Thomas, and A. Scaglione, ‘“Generating random topology
power grids,” in Proc. 41st Annu. Hawaii Int. Conf. Syst. Sci. (HICSS),
‘Waikoloa, HI, USA, Jan. 2008, p. 183.

M. H. Athari and Z. Wang, “Statistically characterizing the electrical
parameters of the grid transformers and transmission lines,” 2017, p. 7,
arXiv:1706.02754. [Online]. Available: http://arxiv.org/abs/1706.02754
E. Bompard, D. Wu, and F. Xue, “The concept of betweenness in the
analysis of power grid vulnerability,” in Proc. Complex. Eng., Feb. 2010,
pp. 52-54.

B. Liu, Z. Li, X. Chen, Y. Huang, and X. Liu, “Recognition and vulner-
ability analysis of key nodes in power grid based on complex network
centrality,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 65, no. 3,
pp. 346-350, Mar. 2018.

J. Horsch, F. Hofmann, D. Schlachtberger, and T. Brown, ‘“PyPSA-
Eur: An open optimisation model of the European transmission system,”
Energy Strategy Rev., vol. 22, pp. 207-215, Nov. 2018.

K. Purchala, L. Meeus, D. V. Dommelen, and R. Belmans, “Usefulness of
DC power flow for active power flow analysis,” in Proc. IEEE Power Eng.
Soc. Gen. Meeting, vol. 1, Jun. 2005, pp. 454-459.

E. Katifori, G. J. Szo116si, and M. O. Magnasco, “Damage and fluctuations
induce loops in optimal transport networks,” Phys. Rev. Lett., vol. 104,
no. 4, Jan. 2010, Art. no. 048704.

M. E. J. Newman, Networks: An Introduction. London, U.K.: Oxford Univ.
Press, 2010.

F. Kaiser, V. Latora, and D. Witthaut, “Inhibiting failure spreading
in complex networks,” 2020, arXiv:2009.02910. [Online]. Available:
http://arxiv.org/abs/2009.02910

P. Van Mieghem, K. Devriendt, and H. Cetinay, ‘‘Pseudoinverse of the
Laplacian and best spreader node in a network,” Phys. Rev. E, vol. 96,
no. 3, 2017, Art. no. 032311.

F. Dorfler, J. W. Simpson-Porco, and F. Bullo, “Electrical networks and
algebraic graph theory: Models, properties, and applications,” Proc. IEEE,
vol. 106, no. 5, pp. 977-1005, May 2018.

H. Ronellenfitsch, D. Manik, J. Horsch, T. Brown, and D. Witthaut, “Dual
theory of transmission line outages,” IEEE Trans. Power Syst., vol. 32,
no. 5, pp. 4060-4068, Sep. 2017.

F. Kaiser and D. Witthaut, ‘““Topological theory of resilience and failure
spreading in flow networks,” Sep. 2020, arXiv:2009.10349. [Online].
Available: http://arxiv.org/abs/2009.10349

G. W. Anderson, A. Guionnet, and O. Zeitouni, An Introduction to Ran-
dom Matrices (Cambridge Studies in Advanced Mathematics). Cambridge,
U.K.: Cambridge Univ. Press, 2009.

S. N. Dorogovtsev, A. V. Goltsev, J. F. F. Mendes, and A. N. Samukhin,
“Spectra of complex networks,” Phys. Rev. E, vol. 68, no. 4, Oct. 2003,
Art. no. 046109.

P. N. McGraw and M. Menzinger, “Laplacian spectra as a diagnostic
tool for network structure and dynamics,” Phys. Rev. E, vol. 77, no. 3,
Mar. 2008, Art. no. 031102.

P. Van Mieghem, Graph Spectra for Complex Networks. Cambridge, U.K.:
Cambridge Univ. Press, 2010.

M. Rohden, A. Sorge, M. Timme, and D. Witthaut, ““Self-organized syn-
chronization in decentralized power grids,”” Phys. Rev. Lett., vol. 109, no. 6,
Aug. 2012, Art. no. 064101.

E. Limpert, W. A. Stahel, and M. Abbt, “Log-normal distributions across
the sciences: Keys and clues,” BioScience, vol. 51, no. 5, p. 341, 2001.
D. Zwillinger and S. Kokoska, CRC Standard Probability and Statistics
Tables and Formulae. Boca Raton, FL, USA: CRC Press, Dec. 1999.

P. H. Westfall, “Kurtosis as peakedness, 1905-2014.R.1.P,” Amer. Statisti-
cian, vol. 68, no. 3, pp. 191-195, Jul. 2014.

67378

(50]

(51]

(52]

[53]

(54]

[55]

[56]

(571

(58]

(591

[60]

B. A. Carreras, V. E. Lynch, I. Dobson, and D. E. Newman, “Complex
dynamics of blackouts in power transmission systems,” Chaos, Interdis-
cipl. J. Nonlinear Sci., vol. 14, no. 3, p. 11, 2004.

S. Mei, F. He, X. Zhang, S. Wu, and G. Wang, “An improved OPA model
and blackout risk assessment,” IEEE Trans. Power Syst., vol. 24, no. 2,
pp. 814-823, May 2009.

P. Hines, E. Cotilla-Sanchez, and S. Blumsack, “Do topological mod-
els provide good information about electricity infrastructure vulnerabil-
ity?”” Chaos, Interdiscipl. J. Nonlinear Sci., vol. 20, no. 3, Sep. 2010,
Art. no. 033122.

B. A. Carreras, D. E. Newman, and I. Dobson, “North American blackout
time series statistics and implications for blackout risk,” IEEE Trans.
Power Syst., vol. 31, no. 6, pp. 4406—4414, Nov. 2016.

S. Biswas and L. Goehring, “Load dependence of power outage statistics,”
Europhys. Lett., vol. 126, no. 4, p. 44002, Jun. 2019.

D. P. Schlachtberger, T. Brown, S. Schramm, and M. Greiner, “The ben-
efits of cooperation in a highly renewable European electricity net-
work,” Energy, vol. 134, pp. 469-481, Sep. 2017. [Online]. Available:
http://arxiv.org/abs/1704.05492

M. Gathmann. (2019). World’s First Dynamic Control Center
in Germany Automates Load Balancing and Outage Prevention.
Accessed: Mar. 1, 2021. [Online]. Available: https://new.siemens.com/
global/en/company/stories/infrastructure/2019/ dynamic-power-grid.html
T. Brown, P. Schierhorn, E. Troster, and T. Ackermann, “Optimising the
European transmission system for 77% renewable electricity by 2030,”
IET Renew. Power Gener., vol. 10, no. 1, pp. 3-9, Jan. 2016.

M. Frysztacki and T. Brown, “Modeling curtailment in germany: How
spatial resolution impacts line congestion,” in Proc. 17th Int. Conf. Eur.
Energy Market (EEM), Sep. 2020, pp. 1-7.

T. Schroder and W. Kuckshinrichs, “Value of lost load: An efficient eco-
nomic indicator for power supply security? A literature review,” Frontiers
Energy Res., vol. 3, p. 55, Dec. 2015.

B. Johnson, V. Chalishazar, E. Cotilla-Sanchez, and T. K. A. Brekken,
“A Monte Carlo methodology for earthquake impact analysis on the elec-
trical grid,” Electr. Power Syst. Res., vol. 184, Jul. 2020, Art. no. 106332.

FRANZ KAISER received the B.Sc. degree
in physics from the University of Gottingen,
Germany, in 2015, and the M.Sc. degree in physics
from the University of Gottingen and with the
Max Planck Institute for Dynamics and Self-
Organization, Gottingen, in 2018. He is currently
pursuing the Ph.D. degree in physics with the
Forschungszentrum Jiilich and the University of
Cologne, Germany.

DIRK WITTHAUT received the M.Sc. and Ph.D.
degrees in physics from the Technical Univer-
sity of Kaiserslautern, Kaiserslautern, Germany,
in 2004 and 2007, respectively. He worked as a
Postdoctoral Researcher with the Niels Bohr Insti-
tute, Copenhagen, Denmark, and the Max Planck
Institute for Dynamics and Self-Organization,
Gottingen, Germany. He has been a Guest Lecturer
with the Kigali Institute of Science and Technol-
ogy, Rwanda. Since 2014, he has been leading a

Research Group with the Forschungszentrum Jiilich, Germany. He is cur-
rently an Assistant Professor with the University of Cologne.

VOLUME 9, 2021



