000892629 001__ 892629
000892629 005__ 20210810182030.0
000892629 0247_ $$2doi$$a10.1016/j.neuroimage.2021.118109
000892629 0247_ $$2ISSN$$a1053-8119
000892629 0247_ $$2ISSN$$a1095-9572
000892629 0247_ $$2Handle$$a2128/27856
000892629 0247_ $$2altmetric$$aaltmetric:105193345
000892629 0247_ $$2pmid$$a33940147
000892629 0247_ $$2WOS$$aWOS:000668960100005
000892629 037__ $$aFZJ-2021-02218
000892629 082__ $$a610
000892629 1001_ $$0P:(DE-HGF)0$$aWu, Shuyi$$b0
000892629 245__ $$aBetter the devil you know than the devil you don't: Neural processing of risk and ambiguity
000892629 260__ $$aOrlando, Fla.$$bAcademic Press$$c2021
000892629 3367_ $$2DRIVER$$aarticle
000892629 3367_ $$2DataCite$$aOutput Types/Journal article
000892629 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1622046679_1385
000892629 3367_ $$2BibTeX$$aARTICLE
000892629 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000892629 3367_ $$00$$2EndNote$$aJournal Article
000892629 520__ $$aRisk and ambiguity are inherent in virtually all human decision-making. Risk refers to a situation in which we know the precise probability of potential outcomes of each option, whereas ambiguity refers to a situation in which outcome probabilities are not known. A large body of research has shown that individuals prefer known risks to ambiguity, a phenomenon known as ambiguity aversion. One heated debate concerns whether risky and ambiguous decisions rely on the same or distinct neural circuits. In the current meta-analyses, we integrated the results of neuroimaging research on decision-making under risk (n = 69) and ambiguity (n = 31). Our results showed that both processing of risk and ambiguity showed convergence in anterior insula, indicating a key role of anterior insula in encoding uncertainty. Risk additionally engaged dorsomedial prefrontal cortex (dmPFC) and ventral striatum, whereas ambiguity specifically recruited the dorsolateral prefrontal cortex (dlPFC), inferior parietal lobe (IPL) and right anterior insula. Our findings demonstrate overlapping and distinct neural substrates underlying different types of uncertainty, guiding future neuroimaging research on risk-taking and ambiguity aversion.Keywords: ALE; Ambiguity; Meta-analysis; Neuroimaging; Reward; Risk; Uncertainty.
000892629 536__ $$0G:(DE-HGF)POF4-525$$a525 - Decoding Brain Organization and Dysfunction (POF4-525)$$cPOF4-525$$fPOF IV$$x0
000892629 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000892629 7001_ $$0P:(DE-HGF)0$$aSun, Sai$$b1
000892629 7001_ $$0P:(DE-Juel1)172024$$aCamilleri, Julia$$b2
000892629 7001_ $$0P:(DE-Juel1)131678$$aEickhoff, Simon B.$$b3
000892629 7001_ $$00000-0003-0123-1524$$aYu, Rongjun$$b4$$eCorresponding author
000892629 773__ $$0PERI:(DE-600)1471418-8$$a10.1016/j.neuroimage.2021.118109$$gVol. 236, p. 118109 -$$p118109 -$$tNeuroImage$$v236$$x1053-8119$$y2021
000892629 8564_ $$uhttps://juser.fz-juelich.de/record/892629/files/1-s2.0-S1053811921003864-main.pdf$$yOpenAccess
000892629 909CO $$ooai:juser.fz-juelich.de:892629$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000892629 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)172024$$aForschungszentrum Jülich$$b2$$kFZJ
000892629 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131678$$aForschungszentrum Jülich$$b3$$kFZJ
000892629 9130_ $$0G:(DE-HGF)POF3-571$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$vConnectivity and Activity$$x0
000892629 9131_ $$0G:(DE-HGF)POF4-525$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vDecoding Brain Organization and Dysfunction$$x0
000892629 9141_ $$y2021
000892629 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-01-29
000892629 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-29
000892629 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2021-01-29
000892629 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2021-01-29
000892629 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2021-01-29
000892629 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
000892629 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNEUROIMAGE : 2019$$d2021-01-29
000892629 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2021-01-29
000892629 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2021-01-29
000892629 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-29
000892629 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2021-01-29
000892629 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-01-29
000892629 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000892629 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2021-01-29
000892629 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2021-01-29
000892629 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bNEUROIMAGE : 2019$$d2021-01-29
000892629 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2021-01-29
000892629 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-01-29
000892629 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2021-01-29$$wger
000892629 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-01-29
000892629 920__ $$lyes
000892629 9201_ $$0I:(DE-Juel1)INM-7-20090406$$kINM-7$$lGehirn & Verhalten$$x0
000892629 980__ $$ajournal
000892629 980__ $$aVDB
000892629 980__ $$aUNRESTRICTED
000892629 980__ $$aI:(DE-Juel1)INM-7-20090406
000892629 9801_ $$aFullTexts