Hauptseite > Publikationsdatenbank > Reproducibility and efficiency in handling complex neurophysiological data > print |
001 | 892671 | ||
005 | 20240313103132.0 | ||
024 | 7 | _ | |2 doi |a 10.1515/nf-2020-0041 |
024 | 7 | _ | |2 ISSN |a 0947-0875 |
024 | 7 | _ | |2 ISSN |a 1868-856X |
024 | 7 | _ | |2 ISSN |a 2363-7013 |
024 | 7 | _ | |2 Handle |a 2128/28428 |
037 | _ | _ | |a FZJ-2021-02257 |
041 | _ | _ | |a English |
082 | _ | _ | |a 610 |
100 | 1 | _ | |0 P:(DE-Juel1)144807 |a Denker, Michael |b 0 |
245 | _ | _ | |a Reproducibility and efficiency in handling complex neurophysiological data |
260 | _ | _ | |a Berlin |b De Gruyter |c 2021 |
336 | 7 | _ | |2 DRIVER |a article |
336 | 7 | _ | |2 DataCite |a Output Types/Journal article |
336 | 7 | _ | |0 PUB:(DE-HGF)16 |2 PUB:(DE-HGF) |a Journal Article |b journal |m journal |s 1628173422_19631 |
336 | 7 | _ | |2 BibTeX |a ARTICLE |
336 | 7 | _ | |2 ORCID |a JOURNAL_ARTICLE |
336 | 7 | _ | |0 0 |2 EndNote |a Journal Article |
520 | _ | _ | |a Preparing a neurophysiological data set with the aim of sharing and publishing is hard. Many of the available tools and services to provide a smooth workflow for data publication are still in their maturing stages and not well integrated. Also, best practices and concrete examples of how to create a rigorous and complete package of an electrophysiology experiment are still lacking. Given the heterogeneity of the field, such unifying guidelines and processes can only be formulated together as a community effort. One of the goals of the NFDI-Neuro consortium initiative is to build such a community for systems and behavioral neuroscience. NFDI-Neuro aims to address the needs of the community to make data management easier and to tackle these challenges in collaboration with various international initiatives (e.g., INCF, EBRAINS). This will give scientists the opportunity to spend more time analyzing the wealth of electrophysiological data they leverage, rather than dealing with data formats and data integrity. |
536 | _ | _ | |0 G:(DE-HGF)POF4-5235 |a 5235 - Digitization of Neuroscience and User-Community Building (POF4-523) |c POF4-523 |f POF IV |x 0 |
536 | _ | _ | |0 G:(DE-HGF)POF4-5231 |a 5231 - Neuroscientific Foundations (POF4-523) |c POF4-523 |f POF IV |x 1 |
536 | _ | _ | |0 G:(DE-Juel1)HDS-LEE-20190612 |a HDS LEE - Helmholtz School for Data Science in Life, Earth and Energy (HDS LEE) (HDS-LEE-20190612) |c HDS-LEE-20190612 |x 2 |
588 | _ | _ | |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de |
700 | 1 | _ | |0 P:(DE-Juel1)144168 |a Grün, Sonja |b 1 |
700 | 1 | _ | |0 P:(DE-Juel1)171573 |a Wachtler, Thomas |b 2 |
700 | 1 | _ | |0 0000-0001-6593-2800 |a Scherberger, Hansjörg |b 3 |e Corresponding author |
773 | _ | _ | |0 PERI:(DE-600)2855056-0 |a 10.1515/nf-2020-0041 |g Vol. 0, no. 0, p. 000010151520200041 |n 1 |p 27- 34 |t Neuroforum |v 27 |x 2363-7013 |y 2021 |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/892671/files/10.1515_nf-2020-0041.pdf |y OpenAccess |
909 | C | O | |o oai:juser.fz-juelich.de:892671 |p openaire |p open_access |p VDB |p driver |p dnbdelivery |
910 | 1 | _ | |0 I:(DE-588b)5008462-8 |6 P:(DE-Juel1)144807 |a Forschungszentrum Jülich |b 0 |k FZJ |
910 | 1 | _ | |0 I:(DE-588b)5008462-8 |6 P:(DE-Juel1)144168 |a Forschungszentrum Jülich |b 1 |k FZJ |
913 | 1 | _ | |0 G:(DE-HGF)POF4-523 |1 G:(DE-HGF)POF4-520 |2 G:(DE-HGF)POF4-500 |3 G:(DE-HGF)POF4 |4 G:(DE-HGF)POF |9 G:(DE-HGF)POF4-5235 |a DE-HGF |b Key Technologies |l Natural, Artificial and Cognitive Information Processing |v Neuromorphic Computing and Network Dynamics |x 0 |
913 | 1 | _ | |0 G:(DE-HGF)POF4-523 |1 G:(DE-HGF)POF4-520 |2 G:(DE-HGF)POF4-500 |3 G:(DE-HGF)POF4 |4 G:(DE-HGF)POF |9 G:(DE-HGF)POF4-5231 |a DE-HGF |b Key Technologies |l Natural, Artificial and Cognitive Information Processing |v Neuromorphic Computing and Network Dynamics |x 1 |
913 | 0 | _ | |0 G:(DE-HGF)POF3-574 |1 G:(DE-HGF)POF3-570 |2 G:(DE-HGF)POF3-500 |3 G:(DE-HGF)POF3 |4 G:(DE-HGF)POF |a DE-HGF |b Key Technologies |l Decoding the Human Brain |v Theory, modelling and simulation |x 0 |
913 | 0 | _ | |0 G:(DE-HGF)POF3-571 |1 G:(DE-HGF)POF3-570 |2 G:(DE-HGF)POF3-500 |3 G:(DE-HGF)POF3 |4 G:(DE-HGF)POF |a DE-HGF |b Key Technologies |l Decoding the Human Brain |v Connectivity and Activity |x 1 |
914 | 1 | _ | |y 2021 |
915 | _ | _ | |0 StatID:(DE-HGF)0310 |2 StatID |a DBCoverage |b NCBI Molecular Biology Database |d 2020-09-02 |
915 | _ | _ | |0 StatID:(DE-HGF)0200 |2 StatID |a DBCoverage |b SCOPUS |d 2020-09-02 |
915 | _ | _ | |0 StatID:(DE-HGF)0510 |2 StatID |a OpenAccess |
915 | _ | _ | |0 LIC:(DE-HGF)CCBY4 |2 HGFVOC |a Creative Commons Attribution CC BY 4.0 |
920 | _ | _ | |l no |
920 | 1 | _ | |0 I:(DE-Juel1)INM-6-20090406 |k INM-6 |l Computational and Systems Neuroscience |x 0 |
920 | 1 | _ | |0 I:(DE-Juel1)INM-10-20170113 |k INM-10 |l Jara-Institut Brain structure-function relationships |x 1 |
920 | 1 | _ | |0 I:(DE-Juel1)IAS-6-20130828 |k IAS-6 |l Theoretical Neuroscience |x 2 |
980 | 1 | _ | |a FullTexts |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-Juel1)INM-6-20090406 |
980 | _ | _ | |a I:(DE-Juel1)INM-10-20170113 |
980 | _ | _ | |a I:(DE-Juel1)IAS-6-20130828 |
980 | _ | _ | |a OPENSCIENCE |
981 | _ | _ | |a I:(DE-Juel1)IAS-6-20130828 |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|