000892715 001__ 892715 000892715 005__ 20210623133501.0 000892715 0247_ $$2doi$$a10.3389/fnins.2021.537666 000892715 0247_ $$2ISSN$$a1662-453X 000892715 0247_ $$2ISSN$$a1662-4548 000892715 0247_ $$2Handle$$a2128/27816 000892715 0247_ $$2pmid$$a34054401 000892715 0247_ $$2WOS$$aWOS:000654971500001 000892715 0247_ $$2altmetric$$aaltmetric:106460007 000892715 037__ $$aFZJ-2021-02285 000892715 082__ $$a610 000892715 1001_ $$0P:(DE-Juel1)131657$$aLindemeyer, Johannes$$b0 000892715 245__ $$aIterative Restoration of the Fringe Phase (REFRASE) for QSM 000892715 260__ $$aLausanne$$bFrontiers Research Foundation$$c2021 000892715 3367_ $$2DRIVER$$aarticle 000892715 3367_ $$2DataCite$$aOutput Types/Journal article 000892715 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1621514319_537 000892715 3367_ $$2BibTeX$$aARTICLE 000892715 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000892715 3367_ $$00$$2EndNote$$aJournal Article 000892715 520__ $$aIn quantitative susceptibility mapping (QSM), reconstructed results can be critically biased by misinterpreted or missing phase data near the edges of the brain support originating from the non-local relationship between field and susceptibility. These data either have to be excluded or corrected before further processing can take place. To address this, our iterative restoration of the fringe phase (REFRASE) approach simultaneously enhances the accuracy of multi-echo phase data QSM maps and the extent of the area available for evaluation. Data loss caused by strong local phase gradients near the surface of the brain support is recovered within the original phase data using harmonic and dipole-based fields extrapolated from a robust support region toward an extended brain mask. Over several iterations, phase data are rectified prior to the application of further QSM processing steps. The concept is successfully validated on numerical phantoms and brain scans from a cohort of volunteers. The increased extent of the mask and improved numerical stability within the segmented globus pallidus confirm the efficacy of the presented method in comparison to traditional evaluation. 000892715 536__ $$0G:(DE-HGF)POF4-525$$a525 - Decoding Brain Organization and Dysfunction (POF4-525)$$cPOF4-525$$fPOF IV$$x0 000892715 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de 000892715 7001_ $$0P:(DE-Juel1)156200$$aWorthoff, Wieland A.$$b1$$ufzj 000892715 7001_ $$0P:(DE-Juel1)167471$$aShymanskaya, Aliaksandra$$b2 000892715 7001_ $$0P:(DE-Juel1)131794$$aShah, N. Jon$$b3$$eCorresponding author$$ufzj 000892715 773__ $$0PERI:(DE-600)2411902-7$$a10.3389/fnins.2021.537666$$gVol. 15, p. 537666$$p537666$$tFrontiers in neuroscience$$v15$$x1662-453X$$y2021 000892715 8564_ $$uhttps://juser.fz-juelich.de/record/892715/files/fnins-15-537666.pdf$$yOpenAccess 000892715 909CO $$ooai:juser.fz-juelich.de:892715$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire 000892715 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156200$$aForschungszentrum Jülich$$b1$$kFZJ 000892715 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131794$$aForschungszentrum Jülich$$b3$$kFZJ 000892715 9130_ $$0G:(DE-HGF)POF3-573$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$vNeuroimaging$$x0 000892715 9131_ $$0G:(DE-HGF)POF4-525$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vDecoding Brain Organization and Dysfunction$$x0 000892715 9141_ $$y2021 000892715 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-05-04 000892715 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-05-04 000892715 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2021-05-04 000892715 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2021-05-04 000892715 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0 000892715 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess 000892715 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bFRONT NEUROSCI-SWITZ : 2019$$d2021-05-04 000892715 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2021-05-04 000892715 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2021-05-04 000892715 915__ $$0StatID:(DE-HGF)1110$$2StatID$$aDBCoverage$$bCurrent Contents - Clinical Medicine$$d2021-05-04 000892715 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2021-05-04 000892715 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-05-04 000892715 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2021-05-04 000892715 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-05-04 000892715 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Blind peer review$$d2021-05-04 000892715 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2021-05-04 000892715 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-05-04 000892715 915__ $$0StatID:(DE-HGF)0320$$2StatID$$aDBCoverage$$bPubMed Central$$d2021-05-04 000892715 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-05-04 000892715 9201_ $$0I:(DE-Juel1)INM-4-20090406$$kINM-4$$lPhysik der Medizinischen Bildgebung$$x0 000892715 9201_ $$0I:(DE-Juel1)INM-11-20170113$$kINM-11$$lJara-Institut Quantum Information$$x1 000892715 9201_ $$0I:(DE-Juel1)VDB1046$$kJARA-BRAIN$$lJülich-Aachen Research Alliance - Translational Brain Medicine$$x2 000892715 980__ $$ajournal 000892715 980__ $$aVDB 000892715 980__ $$aUNRESTRICTED 000892715 980__ $$aI:(DE-Juel1)INM-4-20090406 000892715 980__ $$aI:(DE-Juel1)INM-11-20170113 000892715 980__ $$aI:(DE-Juel1)VDB1046 000892715 9801_ $$aFullTexts