000892734 001__ 892734
000892734 005__ 20240610120122.0
000892734 0247_ $$2doi$$a10.3389/fphy.2021.666913
000892734 0247_ $$2Handle$$a2128/27821
000892734 0247_ $$2altmetric$$aaltmetric:105788171
000892734 0247_ $$2WOS$$aWOS:000653645500001
000892734 037__ $$aFZJ-2021-02295
000892734 082__ $$a530
000892734 1001_ $$0P:(DE-Juel1)176819$$aDasanna, Anil K.$$b0$$eCorresponding author
000892734 245__ $$aImportance of Viscosity Contrast for the Motion of Erythrocytes in Microcapillaries
000892734 260__ $$aLausanne$$bFrontiers Media$$c2021
000892734 3367_ $$2DRIVER$$aarticle
000892734 3367_ $$2DataCite$$aOutput Types/Journal article
000892734 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1621591143_24738
000892734 3367_ $$2BibTeX$$aARTICLE
000892734 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000892734 3367_ $$00$$2EndNote$$aJournal Article
000892734 520__ $$aThe dynamics and deformation of red blood cells (RBCs) in microcirculation affect the flow resistance and transport properties of whole blood. One of the key properties that can alter RBC dynamics in flow is the contrast λ (or ratio) of viscosities between RBC cytosol and blood plasma. Here, we study the dependence of RBC shape and dynamics on the viscosity contrast in tube flow, using mesoscopic hydrodynamics simulations. State diagrams of different RBC dynamical states, including tumbling cells, parachutes, and tank-treading slippers, are constructed for various viscosity contrasts and wide ranges of flow rates and tube diameters (or RBC confinements). Despite similarities in the classification of RBC behavior for different viscosity contrasts, there are notable differences in the corresponding state diagrams. In particular, the region of parachutes is significantly larger for λ = 1 in comparison to λ = 5. Furthermore, the viscosity contrast strongly affects the tumbling-to-slipper transition, thus modifying the regions of occurrence of these states as a function of flow rate and RBC confinement. Also, an increase in cytosol viscosity leads to a reduction in membrane tension induced by flow stresses. Physical mechanisms that determine these differences in RBC dynamical states as a function of λ are discussed.
000892734 536__ $$0G:(DE-HGF)POF4-524$$a524 - Molecular and Cellular Information Processing (POF4-524)$$cPOF4-524$$fPOF IV$$x0
000892734 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000892734 7001_ $$0P:(DE-Juel1)157877$$aMauer, Johannes$$b1
000892734 7001_ $$0P:(DE-Juel1)130665$$aGompper, Gerhard$$b2
000892734 7001_ $$0P:(DE-Juel1)140336$$aFedosov, Dmitry A.$$b3
000892734 773__ $$0PERI:(DE-600)2721033-9$$a10.3389/fphy.2021.666913$$gVol. 9, p. 666913$$p666913$$tFrontiers in physics$$v9$$x2296-424X$$y2021
000892734 8564_ $$uhttps://juser.fz-juelich.de/record/892734/files/Dasanna_et_al-2021-Frontiers_in_Physics.pdf$$yOpenAccess
000892734 909CO $$ooai:juser.fz-juelich.de:892734$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000892734 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)176819$$aForschungszentrum Jülich$$b0$$kFZJ
000892734 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130665$$aForschungszentrum Jülich$$b2$$kFZJ
000892734 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)140336$$aForschungszentrum Jülich$$b3$$kFZJ
000892734 9130_ $$0G:(DE-HGF)POF3-553$$1G:(DE-HGF)POF3-550$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lBioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences$$vPhysical Basis of Diseases$$x0
000892734 9131_ $$0G:(DE-HGF)POF4-524$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vMolecular and Cellular Information Processing$$x0
000892734 9141_ $$y2021
000892734 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-02-03
000892734 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-02-03
000892734 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000892734 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bFRONT PHYS-LAUSANNE : 2019$$d2021-02-03
000892734 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2021-02-03
000892734 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2021-02-03
000892734 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-02-03
000892734 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2021-02-03
000892734 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-02-03
000892734 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2021-02-03
000892734 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000892734 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Blind peer review$$d2021-02-03
000892734 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2021-02-03
000892734 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2021-02-03
000892734 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-02-03
000892734 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-02-03
000892734 9201_ $$0I:(DE-Juel1)IBI-5-20200312$$kIBI-5$$lTheoretische Physik der Lebenden Materie$$x0
000892734 9801_ $$aFullTexts
000892734 980__ $$ajournal
000892734 980__ $$aVDB
000892734 980__ $$aUNRESTRICTED
000892734 980__ $$aI:(DE-Juel1)IBI-5-20200312
000892734 981__ $$aI:(DE-Juel1)IAS-2-20090406