000892742 001__ 892742
000892742 005__ 20240712113152.0
000892742 0247_ $$2doi$$a10.1021/acs.jctc.1c00098
000892742 0247_ $$2ISSN$$a1549-9618
000892742 0247_ $$2ISSN$$a1549-9626
000892742 0247_ $$2Handle$$a2128/27825
000892742 0247_ $$2altmetric$$aaltmetric:103060177
000892742 0247_ $$2pmid$$a33787259
000892742 0247_ $$2WOS$$aWOS:000640652000034
000892742 037__ $$aFZJ-2021-02301
000892742 082__ $$a610
000892742 1001_ $$0P:(DE-Juel1)185067$$aHuang, Jun$$b0$$eCorresponding author
000892742 245__ $$aGrand-Canonical Model of Electrochemical Double Layers from a Hybrid Density–Potential Functional
000892742 260__ $$aWashington, DC$$c2021
000892742 3367_ $$2DRIVER$$aarticle
000892742 3367_ $$2DataCite$$aOutput Types/Journal article
000892742 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1621677226_22730
000892742 3367_ $$2BibTeX$$aARTICLE
000892742 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000892742 3367_ $$00$$2EndNote$$aJournal Article
000892742 520__ $$aA hybrid density–potential functional of an electrochemical interface that encompasses major effects in the contacting metal and electrolyte phases is formulated. Variational analysis of this functional yields a grand-canonical model of the electrochemical double layer (EDL). Specifically, metal electrons are described using the Thomas–Fermi–Dirac–Wigner theory of an inhomogeneous electron gas. The electrolyte solution is treated classically at the mean-field level, taking into account electrostatic interactions, ion size effects, and nonlinear solvent polarization. The model uses parametrizable force relations to describe the short-range forces between metal cationic cores, metal electrons, and electrolyte ions and solvent molecules. Therefore, the gap between the metal skeleton and the electrolyte solution, key to properties of the EDL, varies consistently as a function of the electrode potential. Partial charge transfer in the presence of ion specific adsorption is described using an Anderson–Newns type theory. This model is parametrized with density functional theory calculations, compared with experimental data, and then employed to unravel several interfacial properties of fundamental significance in electrochemistry. In particular, a closer approach of the solution phase toward the metal surface, for example, caused by a stronger ion specific adsorption, decreases the potential of zero charge and elevates the double-layer capacitance curve. In addition, the ion specific adsorption can lead to surface depolarization of ions. The present model represents a viable framework to model (reactive) EDLs under the constant potential condition, which can be used to understand multifaceted EDL effects in electrocatalysis.
000892742 536__ $$0G:(DE-HGF)POF4-123$$a123 - Chemische Energieträger (POF4-123)$$cPOF4-123$$fPOF IV$$x0
000892742 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000892742 7001_ $$00000-0001-7448-8860$$aChen, Shengli$$b1
000892742 7001_ $$0P:(DE-Juel1)178034$$aEikerling, Michael$$b2$$eCorresponding author
000892742 773__ $$0PERI:(DE-600)2166976-4$$a10.1021/acs.jctc.1c00098$$gVol. 17, no. 4, p. 2417 - 2430$$n4$$p2417 - 2430$$tJournal of chemical theory and computation$$v17$$x1549-9626$$y2021
000892742 8564_ $$uhttps://juser.fz-juelich.de/record/892742/files/acs.jctc.1c00098.pdf$$yRestricted
000892742 8564_ $$uhttps://juser.fz-juelich.de/record/892742/files/Grand-Canonical%20Model%20of%20Electrochemical%20Double%20Layers_Abstract.pdf$$yPublished on 2021-03-31. Available in OpenAccess from 2022-03-31.
000892742 909CO $$ooai:juser.fz-juelich.de:892742$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000892742 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)185067$$aForschungszentrum Jülich$$b0$$kFZJ
000892742 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)178034$$aForschungszentrum Jülich$$b2$$kFZJ
000892742 9130_ $$0G:(DE-HGF)POF3-113$$1G:(DE-HGF)POF3-110$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lEnergieeffizienz, Materialien und Ressourcen$$vMethods and Concepts for Material Development$$x0
000892742 9131_ $$0G:(DE-HGF)POF4-123$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vChemische Energieträger$$x0
000892742 9141_ $$y2021
000892742 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-02-02
000892742 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-02-02
000892742 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000892742 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ CHEM THEORY COMPUT : 2019$$d2021-02-02
000892742 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bJ CHEM THEORY COMPUT : 2019$$d2021-02-02
000892742 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-02-02
000892742 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-02-02
000892742 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2021-02-02
000892742 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-02-02
000892742 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-02-02
000892742 920__ $$lyes
000892742 9201_ $$0I:(DE-Juel1)IEK-13-20190226$$kIEK-13$$lIEK-13$$x0
000892742 9801_ $$aFullTexts
000892742 980__ $$ajournal
000892742 980__ $$aVDB
000892742 980__ $$aUNRESTRICTED
000892742 980__ $$aI:(DE-Juel1)IEK-13-20190226
000892742 981__ $$aI:(DE-Juel1)IET-3-20190226