000892744 001__ 892744
000892744 005__ 20240712113152.0
000892744 0247_ $$2doi$$a10.1149/1945-7111/abf508
000892744 0247_ $$2ISSN$$a0013-4651
000892744 0247_ $$2ISSN$$a0096-4743
000892744 0247_ $$2ISSN$$a0096-4786
000892744 0247_ $$2ISSN$$a1945-6859
000892744 0247_ $$2ISSN$$a1945-7111
000892744 0247_ $$2ISSN$$a2156-7395
000892744 0247_ $$2Handle$$a2128/27822
000892744 0247_ $$2altmetric$$aaltmetric:103488067
000892744 0247_ $$2WOS$$aWOS:000640599300001
000892744 037__ $$aFZJ-2021-02302
000892744 082__ $$a660
000892744 1001_ $$0P:(DE-Juel1)129878$$aKulikovsky, Andrei$$b0$$eCorresponding author
000892744 245__ $$aImpedance and Resistivity of Low–Pt Cathode in a PEM Fuel Cell
000892744 260__ $$aBristol$$bIOP Publishing$$c2021
000892744 3367_ $$2DRIVER$$aarticle
000892744 3367_ $$2DataCite$$aOutput Types/Journal article
000892744 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1621608072_23315
000892744 3367_ $$2BibTeX$$aARTICLE
000892744 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000892744 3367_ $$00$$2EndNote$$aJournal Article
000892744 520__ $$aAnalysis of impedance model for the low–Pt cathode catalyst layer (CCL) in a PEM fuel cell is reported. The CCL is modeled as a cylindrical pore with the Nafion film separating the open pore volume from the Pt/C surface. In the limit of fast oxygen transport through the open pore, analytical expressions for the CCL impedance, Nafion film impedance and for the ohmic CCL resistivity Rccl (Ohm cm2) are derived. The characteristic frequency of film impedance is independent of film oxygen transport parameters and it is only 1.73 times less than the frequency of faradaic process in the CCL, which impedes separation of these processes by impedance spectroscopy. A fast version of algorithm for distrubution of relaxation times calculation is developed and used to illustrate the problem. Rccl exhibits rapid growth in the vicinity of limiting current density in the Nafion film, manifesting "overlinear" oxygen transport loss reported in experiments. For typical low–Pt cell parameters, this growth occurs at the cell current around 1 A cm−2. The model leads to a simple relation for the Nafion film transport resistivity ${{ \mathcal R }}_{N}$ (s cm−1); this relation is compared to semi–empirical and model relations available in literature.
000892744 536__ $$0G:(DE-HGF)POF4-123$$a123 - Chemische Energieträger (POF4-123)$$cPOF4-123$$fPOF IV$$x0
000892744 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000892744 773__ $$0PERI:(DE-600)2002179-3$$a10.1149/1945-7111/abf508$$gVol. 168, no. 4, p. 044512 -$$n4$$p044512 -$$tJournal of the Electrochemical Society$$v168$$x1945-7111$$y2021
000892744 8564_ $$uhttps://juser.fz-juelich.de/record/892744/files/Impedance%20and%20resistivity%20of%20low-Pt%20cathode%20in%20a%20PEM%20fuel%20cell_Post_Print.pdf$$yOpenAccess
000892744 8564_ $$uhttps://juser.fz-juelich.de/record/892744/files/Kulikovsky_2021_J._Electrochem._Soc._168_044512.pdf$$yOpenAccess
000892744 8767_ $$d2021-12-31$$eHybrid-OA$$jPublish and Read
000892744 909CO $$ooai:juser.fz-juelich.de:892744$$pdnbdelivery$$popenCost$$pVDB$$pdriver$$popen_access$$popenaire
000892744 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129878$$aForschungszentrum Jülich$$b0$$kFZJ
000892744 9130_ $$0G:(DE-HGF)POF3-113$$1G:(DE-HGF)POF3-110$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lEnergieeffizienz, Materialien und Ressourcen$$vMethods and Concepts for Material Development$$x0
000892744 9131_ $$0G:(DE-HGF)POF4-123$$1G:(DE-HGF)POF4-120$$2G:(DE-HGF)POF4-100$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bForschungsbereich Energie$$lMaterialien und Technologien für die Energiewende (MTET)$$vChemische Energieträger$$x0
000892744 9141_ $$y2021
000892744 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-01-27
000892744 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-01-27
000892744 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology$$d2021-01-27
000892744 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000892744 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2021-01-27
000892744 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-27
000892744 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-01-27
000892744 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2021-01-27
000892744 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000892744 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ ELECTROCHEM SOC : 2019$$d2021-01-27
000892744 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-27
000892744 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-01-27
000892744 920__ $$lyes
000892744 9201_ $$0I:(DE-Juel1)IEK-13-20190226$$kIEK-13$$lIEK-13$$x0
000892744 9801_ $$aFullTexts
000892744 980__ $$ajournal
000892744 980__ $$aVDB
000892744 980__ $$aUNRESTRICTED
000892744 980__ $$aI:(DE-Juel1)IEK-13-20190226
000892744 980__ $$aAPC
000892744 981__ $$aI:(DE-Juel1)IET-3-20190226