000892747 001__ 892747
000892747 005__ 20220210164006.0
000892747 0247_ $$2doi$$a10.1016/j.rse.2021.112499
000892747 0247_ $$2ISSN$$a0034-4257
000892747 0247_ $$2ISSN$$a1879-0704
000892747 0247_ $$2Handle$$a2128/30302
000892747 0247_ $$2altmetric$$aaltmetric:106228499
000892747 0247_ $$2WOS$$aWOS:000663567700005
000892747 037__ $$aFZJ-2021-02304
000892747 041__ $$aEnglish
000892747 082__ $$a550
000892747 1001_ $$0P:(DE-HGF)0$$aCogliati, S.$$b0$$eCorresponding author
000892747 245__ $$aThe PRISMA imaging spectroscopy mission: overview and first performance analysis
000892747 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2021
000892747 3367_ $$2DRIVER$$aarticle
000892747 3367_ $$2DataCite$$aOutput Types/Journal article
000892747 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1642428164_24384
000892747 3367_ $$2BibTeX$$aARTICLE
000892747 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000892747 3367_ $$00$$2EndNote$$aJournal Article
000892747 520__ $$aThe PRISMA satellite mission launched on March 22nd, 2019 is one of the latest spaceborne imaging spectroscopy mission for Earth Observation. The PRISMA satellite comprises a high-spectral resolution VNIR-SWIR imaging spectrometer and a panchromatic camera. In summer 2019, first operations during the commissioning phase were mainly devoted to acquisitions in specific areas for evaluating instrument functioning, in-flight performance, and mission data product accuracy. A field and airborne campaign was carried out over an agriculture area in Italy to collect in-situ multi-source spectroscopy measurements at different scales simultaneously with PRISMA. The spectral, radiometric and spatial performance of PRISMA Level 1 Top-Of-Atmosphere radiance (LTOA) product were analyzed. The in-situ surface reflectance measurements over different landcovers were propagated to LTOA using MODTRAN5 radiative transfer simulations and compared with satellite observations. Overall, this work offers a first quantitative evaluation about the PRISMA mission performance and imaging spectroscopy LTOA data product consistency. Our results show that the spectral smile is less than 5 nm, the average spectral resolution is 13 nm and 11 nm (VNIR and SWIR respectively) and it varies ±2 nm across track. The radiometric comparison between PRISMA and field/airborne spectroscopy shows a difference lower than 5% for NIR and SWIR, whereas it is included in the 2–7% range in the VIS. The estimated instrument signal to noise ratio (SNR) is ≈400–500 in the NIR and part of the SWIR (<1300 nm), lower SNR values were found at shorter (<700 nm) and longer wavelengths (>1600 nm). The VNIR-to-SWIR spatial co-registration error is below 8 m and the spatial resolution is 37.11 m and 38.38 m for VNIR and SWIR respectively. The results are in-line with the expectations and mission requirements and indicate that acquired images are suitable for further scientific applications. However, this first assessment is based on data from a rural area and this cannot be fully exhaustive. Further studies are needed to confirm the performance for other land cover types like snow, inland and coastal waters, deserts or urban areas.
000892747 536__ $$0G:(DE-HGF)POF4-2173$$a2173 - Agro-biogeosystems: controls, feedbacks and impact (POF4-217)$$cPOF4-217$$fPOF IV$$x0
000892747 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000892747 7001_ $$0P:(DE-HGF)0$$aSarti, F.$$b1
000892747 7001_ $$0P:(DE-HGF)0$$aChiarantini, L.$$b2
000892747 7001_ $$0P:(DE-HGF)0$$aCosi, M.$$b3
000892747 7001_ $$0P:(DE-HGF)0$$aLorusso, R.$$b4
000892747 7001_ $$0P:(DE-HGF)0$$aLopinto, E.$$b5
000892747 7001_ $$0P:(DE-HGF)0$$aMiglietta, F.$$b6
000892747 7001_ $$0P:(DE-HGF)0$$aGenesio, L.$$b7
000892747 7001_ $$0P:(DE-HGF)0$$aGuanter, L.$$b8
000892747 7001_ $$0P:(DE-Juel1)145146$$aDamm, A.$$b9$$ufzj
000892747 7001_ $$0P:(DE-HGF)0$$aPérez-López, S.$$b10
000892747 7001_ $$0P:(DE-HGF)0$$aScheffler, D.$$b11
000892747 7001_ $$0P:(DE-HGF)0$$aTagliabue, G.$$b12
000892747 7001_ $$0P:(DE-HGF)0$$aPanigada, C.$$b13
000892747 7001_ $$0P:(DE-Juel1)129388$$aRascher, U.$$b14$$ufzj
000892747 7001_ $$0P:(DE-HGF)0$$aDowling, T. P. F.$$b15
000892747 7001_ $$0P:(DE-HGF)0$$aGiardino, C.$$b16
000892747 7001_ $$0P:(DE-HGF)0$$aColombo, R.$$b17
000892747 773__ $$0PERI:(DE-600)1498713-2$$a10.1016/j.rse.2021.112499$$gVol. 262, p. 112499 -$$p112499 -$$tRemote sensing of environment$$v262$$x0034-4257$$y2021
000892747 8564_ $$uhttps://juser.fz-juelich.de/record/892747/files/Pre-print%20version%20of%20the%20article.pdf$$yPublished on 2021-05-21. Available in OpenAccess from 2023-05-21.
000892747 909CO $$ooai:juser.fz-juelich.de:892747$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000892747 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145146$$aForschungszentrum Jülich$$b9$$kFZJ
000892747 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129388$$aForschungszentrum Jülich$$b14$$kFZJ
000892747 9131_ $$0G:(DE-HGF)POF4-217$$1G:(DE-HGF)POF4-210$$2G:(DE-HGF)POF4-200$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-2173$$aDE-HGF$$bForschungsbereich Erde und Umwelt$$lErde im Wandel – Unsere Zukunft nachhaltig gestalten$$vFür eine nachhaltige Bio-Ökonomie – von Ressourcen zu Produkten$$x0
000892747 9130_ $$0G:(DE-HGF)POF3-582$$1G:(DE-HGF)POF3-580$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lKey Technologies for the Bioeconomy$$vPlant Science$$x0
000892747 9141_ $$y2021
000892747 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-02-03
000892747 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-02-03
000892747 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2021-02-03
000892747 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2021-02-03
000892747 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2021-02-03
000892747 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
000892747 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000892747 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bREMOTE SENS ENVIRON : 2019$$d2021-02-03
000892747 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bREMOTE SENS ENVIRON : 2019$$d2021-02-03
000892747 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-02-03
000892747 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-02-03
000892747 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2021-02-03
000892747 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2021-02-03
000892747 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-02-03
000892747 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2021-02-03$$wger
000892747 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-02-03
000892747 920__ $$lyes
000892747 9201_ $$0I:(DE-Juel1)IBG-2-20101118$$kIBG-2$$lPflanzenwissenschaften$$x0
000892747 980__ $$ajournal
000892747 980__ $$aVDB
000892747 980__ $$aUNRESTRICTED
000892747 980__ $$aI:(DE-Juel1)IBG-2-20101118
000892747 9801_ $$aFullTexts