001     892803
005     20210810182034.0
024 7 _ |a 10.1007/s00122-021-03819-w
|2 doi
024 7 _ |a 0040-5752
|2 ISSN
024 7 _ |a 0514-0641
|2 ISSN
024 7 _ |a 1432-2242
|2 ISSN
024 7 _ |a 2128/28176
|2 Handle
024 7 _ |a altmetric:104769196
|2 altmetric
024 7 _ |a 33900415
|2 pmid
024 7 _ |a WOS:000644338400002
|2 WOS
037 _ _ |a FZJ-2021-02360
041 _ _ |a English
082 _ _ |a 570
100 1 _ |a Ober, Eric S.
|0 0000-0002-4832-5897
|b 0
|e Corresponding author
245 _ _ |a Wheat root systems as a breeding target for climate resilience
260 _ _ |a Heidelberg
|c 2021
|b Springer
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1626183627_3632
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a In the coming decades, larger genetic gains in yield will be necessary to meet projected demand, and this must be achieved despite the destabilizing impacts of climate change on crop production. The root systems of crops capture the water and nutrients needed to support crop growth, and improved root systems tailored to the challenges of specific agricultural environments could improve climate resiliency. Each component of root initiation, growth and development is controlled genetically and responds to the environment, which translates to a complex quantitative system to navigate for the breeder, but also a world of opportunity given the right tools. In this review, we argue that it is important to know more about the ‘hidden half’ of crop plants and hypothesize that crop improvement could be further enhanced using approaches that directly target selection for root system architecture. To explore these issues, we focus predominantly on bread wheat (Triticum aestivum L.), a staple crop that plays a major role in underpinning global food security. We review the tools available for root phenotyping under controlled and field conditions and the use of these platforms alongside modern genetics and genomics resources to dissect the genetic architecture controlling the wheat root system. To contextualize these advances for applied wheat breeding, we explore questions surrounding which root system architectures should be selected for, which agricultural environments and genetic trait configurations of breeding populations are these best suited to, and how might direct selection for these root ideotypes be implemented in practice.
536 _ _ |a 214 - Küsten im Wandel unter anthropogenen und natürlichen Einflüssen (POF4-214)
|0 G:(DE-HGF)POF4-214
|c POF4-214
|f POF IV
|x 0
536 _ _ |a 217 - Für eine nachhaltige Bio-Ökonomie – von Ressourcen zu Produkten (POF4-217)
|0 G:(DE-HGF)POF4-217
|c POF4-217
|f POF IV
|x 1
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Alahmad, Samir
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Cockram, James
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Forestan, Cristian
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Hickey, Lee T.
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Kant, Josefine
|0 P:(DE-Juel1)169451
|b 5
700 1 _ |a Maccaferri, Marco
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Marr, Emily
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Milner, Matthew
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Pinto, Francisco
|0 P:(DE-Juel1)138884
|b 9
700 1 _ |a Rambla, Charlotte
|0 P:(DE-HGF)0
|b 10
700 1 _ |a Reynolds, Matthew
|0 P:(DE-HGF)0
|b 11
700 1 _ |a Salvi, Silvio
|0 P:(DE-HGF)0
|b 12
700 1 _ |a Sciara, Giuseppe
|0 P:(DE-HGF)0
|b 13
700 1 _ |a Snowdon, Rod J.
|0 P:(DE-HGF)0
|b 14
700 1 _ |a Thomelin, Pauline
|0 P:(DE-HGF)0
|b 15
700 1 _ |a Tuberosa, Roberto
|0 P:(DE-HGF)0
|b 16
700 1 _ |a Uauy, Cristobal
|0 P:(DE-HGF)0
|b 17
700 1 _ |a Voss-Fels, Kai P.
|0 P:(DE-HGF)0
|b 18
700 1 _ |a Wallington, Emma
|0 P:(DE-HGF)0
|b 19
700 1 _ |a Watt, Michelle
|0 P:(DE-Juel1)166460
|b 20
773 _ _ |a 10.1007/s00122-021-03819-w
|0 PERI:(DE-600)1478966-8
|p 1645–1662
|t Theoretical and applied genetics
|v 134
|y 2021
|x 1432-2242
856 4 _ |u https://juser.fz-juelich.de/record/892803/files/Ober2021_Article_WheatRootSystemsAsABreedingTar.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:892803
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)169451
913 1 _ |a DE-HGF
|b Forschungsbereich Erde und Umwelt
|l Erde im Wandel – Unsere Zukunft nachhaltig gestalten
|1 G:(DE-HGF)POF4-210
|0 G:(DE-HGF)POF4-214
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-200
|4 G:(DE-HGF)POF
|v Küsten im Wandel unter anthropogenen und natürlichen Einflüssen
|x 0
913 1 _ |a DE-HGF
|b Forschungsbereich Erde und Umwelt
|l Erde im Wandel – Unsere Zukunft nachhaltig gestalten
|1 G:(DE-HGF)POF4-210
|0 G:(DE-HGF)POF4-217
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-200
|4 G:(DE-HGF)POF
|v Für eine nachhaltige Bio-Ökonomie – von Ressourcen zu Produkten
|x 1
913 0 _ |a DE-HGF
|b Key Technologies
|l Key Technologies for the Bioeconomy
|1 G:(DE-HGF)POF3-580
|0 G:(DE-HGF)POF3-582
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-500
|4 G:(DE-HGF)POF
|v Plant Science
|x 0
914 1 _ |y 2021
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2021-01-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-01-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2021-01-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2021-01-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
|d 2021-01-30
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1060
|2 StatID
|b Current Contents - Agriculture, Biology and Environmental Sciences
|d 2021-01-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2021-01-30
915 _ _ |a DEAL Springer
|0 StatID:(DE-HGF)3002
|2 StatID
|d 2021-01-30
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2021-01-30
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
|d 2021-01-30
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-01-30
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
|d 2021-01-30
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b THEOR APPL GENET : 2019
|d 2021-01-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
|d 2021-01-30
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2021-01-30
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
|d 2021-01-30
|w ger
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2021-01-30
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IBG-2-20101118
|k IBG-2
|l Pflanzenwissenschaften
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IBG-2-20101118
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21