000892819 001__ 892819
000892819 005__ 20220930130317.0
000892819 0247_ $$2doi$$a10.1016/j.neuroimage.2021.118201
000892819 0247_ $$2ISSN$$a1053-8119
000892819 0247_ $$2ISSN$$a1095-9572
000892819 0247_ $$2Handle$$a2128/28174
000892819 0247_ $$2altmetric$$aaltmetric:106436818
000892819 0247_ $$2pmid$$a34033913
000892819 0247_ $$2WOS$$aWOS:000670278100013
000892819 037__ $$aFZJ-2021-02365
000892819 082__ $$a610
000892819 1001_ $$0P:(DE-Juel1)131880$$aPopovych, Oleksandr V.$$b0$$eCorresponding author$$ufzj
000892819 245__ $$aInter-subject and inter-parcellation variability of resting-state whole-brain dynamical modeling
000892819 260__ $$aOrlando, Fla.$$bAcademic Press$$c2021
000892819 3367_ $$2DRIVER$$aarticle
000892819 3367_ $$2DataCite$$aOutput Types/Journal article
000892819 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1642081485_25571
000892819 3367_ $$2BibTeX$$aARTICLE
000892819 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000892819 3367_ $$00$$2EndNote$$aJournal Article
000892819 520__ $$aModern approaches to investigate complex brain dynamics suggest to represent the brain as a functional network of brain regions defined by a brain atlas, while edges represent the structural or functional connectivity among them. This approach is also utilized for mathematical modeling of the resting-state brain dynamics, where the applied brain parcellation plays an essential role in deriving the model network and governing the modeling results. There is however no consensus and empirical evidence on how a given brain atlas affects the model outcome, and the choice of parcellation is still rather arbitrary. Accordingly, we explore the impact of brain parcellation on inter-subject and inter-parcellation variability of model fitting to empirical data. Our objective is to provide a comprehensive empirical evidence of potential influences of parcellation choice on resting-state whole-brain dynamical modeling. We show that brain atlases strongly influence the quality of model validation and propose several variables calculated from empirical data to account for the observed variability. A few classes of such data variables can be distinguished depending on their inter-subject and inter-parcellation explanatory power.
000892819 536__ $$0G:(DE-HGF)POF4-5232$$a5232 - Computational Principles (POF4-523)$$cPOF4-523$$fPOF IV$$x0
000892819 536__ $$0G:(DE-HGF)POF4-5231$$a5231 - Neuroscientific Foundations (POF4-523)$$cPOF4-523$$fPOF IV$$x1
000892819 536__ $$0G:(DE-Juel1)Helmholtz-SLNS$$aSLNS - SimLab Neuroscience (Helmholtz-SLNS)$$cHelmholtz-SLNS$$x2
000892819 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000892819 7001_ $$0P:(DE-Juel1)178611$$aJung, Kyesam$$b1$$ufzj
000892819 7001_ $$0P:(DE-Juel1)164577$$aManos, Thanos$$b2
000892819 7001_ $$0P:(DE-HGF)0$$aDiaz-Pier, Sandra$$b3
000892819 7001_ $$0P:(DE-Juel1)131684$$aHoffstaedter, Felix$$b4$$ufzj
000892819 7001_ $$0P:(DE-Juel1)169295$$aSchreiber, Jan$$b5
000892819 7001_ $$0P:(DE-HGF)0$$aYeo, B. T. Thomas$$b6
000892819 7001_ $$0P:(DE-Juel1)131678$$aEickhoff, Simon B.$$b7$$ufzj
000892819 773__ $$0PERI:(DE-600)1471418-8$$a10.1016/j.neuroimage.2021.118201$$gp. 118201 -$$p118201 -$$tNeuroImage$$v236$$x1053-8119$$y2021
000892819 8564_ $$uhttps://juser.fz-juelich.de/record/892819/files/Invoice_OAD0000122022.pdf
000892819 8564_ $$uhttps://juser.fz-juelich.de/record/892819/files/1-s2.0-S105381192100478X-main.pdf$$yOpenAccess
000892819 8767_ $$8OAD0000122022$$92021-05-26$$d2021-06-07$$eAPC$$jZahlung erfolgt$$zBelegnr. 1200167664
000892819 909CO $$ooai:juser.fz-juelich.de:892819$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire$$pdnbdelivery
000892819 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131880$$aForschungszentrum Jülich$$b0$$kFZJ
000892819 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)178611$$aForschungszentrum Jülich$$b1$$kFZJ
000892819 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131684$$aForschungszentrum Jülich$$b4$$kFZJ
000892819 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131678$$aForschungszentrum Jülich$$b7$$kFZJ
000892819 9131_ $$0G:(DE-HGF)POF4-523$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5232$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vNeuromorphic Computing and Network Dynamics$$x0
000892819 9131_ $$0G:(DE-HGF)POF4-523$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF4-5231$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vNeuromorphic Computing and Network Dynamics$$x1
000892819 9130_ $$0G:(DE-HGF)POF3-572$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$v(Dys-)function and Plasticity$$x0
000892819 9141_ $$y2021
000892819 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-01-29
000892819 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-01-29
000892819 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences$$d2021-01-29
000892819 915__ $$0StatID:(DE-HGF)1190$$2StatID$$aDBCoverage$$bBiological Abstracts$$d2021-01-29
000892819 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search$$d2021-01-29
000892819 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNEUROIMAGE : 2019$$d2021-01-29
000892819 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2021-01-29
000892819 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2021-01-29
000892819 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-01-29
000892819 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2021-01-29
000892819 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-01-29
000892819 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000892819 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC$$d2021-01-29
000892819 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2021-01-29
000892819 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bNEUROIMAGE : 2019$$d2021-01-29
000892819 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews$$d2021-01-29
000892819 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-01-29
000892819 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000892819 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz$$d2021-01-29$$wger
000892819 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-01-29
000892819 920__ $$lyes
000892819 9201_ $$0I:(DE-Juel1)INM-7-20090406$$kINM-7$$lGehirn & Verhalten$$x0
000892819 980__ $$ajournal
000892819 980__ $$aVDB
000892819 980__ $$aI:(DE-Juel1)INM-7-20090406
000892819 980__ $$aAPC
000892819 980__ $$aUNRESTRICTED
000892819 9801_ $$aAPC
000892819 9801_ $$aFullTexts