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a b s t r a c t 

Modern approaches to investigate complex brain dynamics suggest to represent the brain as a functional network 

of brain regions defined by a brain atlas, while edges represent the structural or functional connectivity among 

them. This approach is also utilized for mathematical modeling of the resting-state brain dynamics, where the 

applied brain parcellation plays an essential role in deriving the model network and governing the modeling 

results. There is however no consensus and empirical evidence on how a given brain atlas affects the model 

outcome, and the choice of parcellation is still rather arbitrary. Accordingly, we explore the impact of brain 

parcellation on inter-subject and inter-parcellation variability of model fitting to empirical data. Our objective 

is to provide a comprehensive empirical evidence of potential influences of parcellation choice on resting-state 

whole-brain dynamical modeling. We show that brain atlases strongly influence the quality of model validation 

and propose several variables calculated from empirical data to account for the observed variability. A few classes 

of such data variables can be distinguished depending on their inter-subject and inter-parcellation explanatory 

power. 
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. Introduction 

Investigation of brain dynamics during task-evoked and resting-state

ctivity is frequently based on the inspection of corresponding func-

ional networks that are collections of brain regions with enhanced syn-

hronization among them ( Bolt et al., 2017; Cole et al., 2014; Park and

riston, 2013 ). Neither nodes nor edges of such networks can uniquely

e defined, especially, for the resting-state brain activity. State-of-the-

rt approaches range from voxel-wise nodes resulting in huge networks

efined by the number of voxels in the underlying neuroimaging data

o nodes encircling entire brain regions either as neuronal foci co-

ctivated during a specific task or parcellated according to other cri-

eria ( Stanley et al., 2013 ). In the latter case, the brain regions are

efined based on a certain brain parcellation ( Eickhoff et al., 2018b;

tanley et al., 2013; Thirion et al., 2014 ), which reduces the dimension-

lity of the brain data by merging hundred thousands of voxels from
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igh-resolution neuroimaging data into a few hundreds up to thousand

f brain regions. A unified brain parcellation could improve the inter-

retability and comparability of results for different subjects and studies

nd increase the effective signal-to-noise ratio. However, there are many

ays to parcellate the brain into separate regions (or parcels), which is

ctively debated in the literature ( Eickhoff et al., 2018b; Stanley et al.,

013; Thirion et al., 2014 ). There is a sparse empirical evidence for the

ffect of a particular atlas choice, but see Refs. ( Messe, 2019; Pervaiz

t al., 2020; Zimmermann et al., 2019 ) for recent reports. 

The great variety of possible techniques for creating brain parcella-

ions and existing brain atlases makes the choice of a particular parcel-

ation for a given analysis very difficult ( Eickhoff et al., 2018a ). At least

wo paradigmatically distinct approaches can be used for the parcella-

ion, where the brain regions are defined based either on their anatom-

cal or functional properties. For example, the cortex can be parcellated

nto regions according to its folding properties, e.g., into gyral-based
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o  
arcels encircled by tracing from the depth of one sulcus to another

 Desikan et al., 2006 ). A very different parcellation approach is based

n the brain function, where the patterns of the resting-state functional

onnectivity (FC) can be used to group the voxels (or vertices) into

arcels of similar connectivity ( Schaefer et al., 2018; Shen et al., 2013 ).

he latter can be evaluated either according to a global similarity mea-

ure combined with abrupt changes in the local gradient of the whole-

rain intrinsic FC ( Schaefer et al., 2018 ) or based on the graph theory

ith application of a multigraph clustering approach to the resting-state

C ( Shen et al., 2013 ). From the above anatomical and functional ap-

roaches to brain parcellation, one may assume that the latter could

e more appropriate for calculation of the whole-brain FC, where the

arcels are suspected to be composed of voxels with higher functional

omogeneity. However, the detailed effects of these two distinct par-

ellation techniques on the results of data analysis and modeling can

ardly be predicted by a simple theoretical reasoning. 

Utilizing a brain parcellation is essential for dynamical modeling of

rain activity, where the brain regions are represented as nodes of a

etwork model ( Honey et al., 2009 ). The selected brain parcellation is

nvolved in the extraction of the structural connectivity (SC), inferred

rom diffusion-weighted magnetic resonance imaging (dwMRI), which

erves as proxies for anatomical connections between brain regions at

he meso- and macroscopic level ( Hagmann et al., 2010 ). This SC can

hen be used to estimate the coupling strength and communication de-

ay between the nodes of the model network contributing in such a way

o the model derivation ( Deco et al., 2011; Ghosh et al., 2008 ). Further-

ore, the selected parcellation can be used to extract the blood oxygen

evel-dependent (BOLD) signals inferred from functional magnetic reso-

ance imaging (fMRI) and calculate the empirical FC. The latter can be

ompared to simulated FC calculated from simulated BOLD time series

enerated by the derived model, thus validating the simulation results

gainst the empirical data ( Cabral et al., 2011; Deco and Jirsa, 2012 ).

s a consequence, this process crucially depends on the empirical data

sed for the model derivation (e.g., SC) and fitting (e.g., FC), which in

urn is affected by the data processing, in particular, by the selected

rain parcellation ( Messe, 2019; Pervaiz et al., 2020; Popovych et al.,

019; Zimmermann et al., 2019 ). 

In this study we therefore simulate the resting-state brain activity

sing dynamical mathematical models to investigate the effects of brain

arcellations. Functional and anatomical brain atlases with different res-

lutions are used for model validation against empirical resting-state

unctional and structural connectivity data. We consider three represen-

atives from the above parcellation classes as given by the anatomical

arvard-Oxford atlas ( Desikan et al., 2006 ) and the functional Schae-

er ( Schaefer et al., 2018 ) and Shen ( Shen et al., 2013 ) atlases. The ef-

ects of brain parcellation are studied in detail with two systems of cou-

led phase and limit-cycle oscillators suggested for modeling cortical

scillations and resting-state BOLD dynamics ( Breakspear et al., 2010;

abral et al., 2011; Deco et al., 2019; 2017; Fukushima and Sporns,

018; Ponce-Alvarez et al., 2015 ). The effects are investigated by an ex-

ensive exploration of the model parameter space. The models are fitted

gainst empirical data of individual subjects for a set of varying condi-

ions, in particular, the granularity of the parcellation for Schaefer and

hen atlases and the maximal probability threshold for Harvard-Oxford

tlas affecting the size of brain regions. 

The number of parcels is an important parameter, which may influ-

nce the results of the mathematical modeling, the empirical structure-

unction relationship as well as the prediction of human behavior from

he patterns of brain connectivity ( Honey et al., 2009; Messe, 2019; Per-

aiz et al., 2020; Proix et al., 2016; Zimmermann et al., 2019 ) and de-

erves a systematic modeling investigation ( Popovych et al., 2019 ). In

he paper ( Proix et al., 2016 ) the authors explored the impact of parcella-

ions and local connectivity on the dynamics of neural mass models with

nd without delays, where the different parcellations were obtained by

andomly splitting the brain regions of the Desikan-Killiany atlas into

maller subregions. It was in particular identified that spatial attractors
2 
f slow brain dynamics were qualitatively not affected by the number of

egions in the cortical parcellation, whereas the parcellation granular-

ty influenced their critical range in the global coupling strength. On the

ther hand, the richness of fast dynamics of the response to perturba-

ions increased only if delays were considered in the model, suggesting

n optimal parcellation scale, which can be decomposed into only a few

patial patterns. The work of Zimmermann et al. (2019) exposed a sub-

ect specificity to the association between empirical structural and func-

ional connectomes for six different datasets and brain parcellations. It

as however shown that intra-subject specificity of the SC-FC fit was

chieved only for one of the considered cases indicating that select-

ng an appropriate brain parcellation was critical to provide enough

tatistical information to individually link SC and FC. The structure-

unction relationships between empirical SC and FC were also investi-

ated for several brain parcellations with various spatial resolutions by

esse (2019) revealing a significant effect of brain parcellation on the

C-FC correlation driven by the number of brain regions. In the paper

 Pervaiz et al., 2020 ) the impact of brain parcellation on the predic-

ive power of data-driven models was analyzed regarding the relation-

hip between whole brain functional connectivity patterns and behav-

oral traits in an attempt to find the optimal parcellation among other

onditions. 

In this study we analyze the parcellation-induced differences of

odel validation against empirical data for two approaches to brain

arcellation based on anatomical or functional brain data. Furthermore,

e test for an effect on two different models of limit-cycle and phase os-

illators distinguished whether the amplitude of the simulated BOLD

ignals is taken into account or not, respectively. We consider func-

ional and structure-functional fitting modalities for the model vali-

ation against empirical data. We aim to evaluate whether and how

ifferent parcellations may influence the modeling results and suggest

ossible approaches to explain inter-subject and inter-parcellation vari-

tion of model fitting. In our approach, we study the contribution of

ifferent features of the experimental data, which can vary with the

re-processing and chosen parcellation, to the ability of mathematical

odels to make an individualized link between simulated and empir-

cal connectomes. We demonstrate that the considered atlases lead to

ubstantially different results when comparing the model fit for parcel-

ations within and between the anatomical and functional parcellation

amilies. This is especially the case for the quality of the model vali-

ation, structure of the model parameter space and reliability of the

tting results. To understand the origin of the observed behavior of the

odel fitting, we also evaluate how the properties of the empirical data

sed for model derivation and validation may influence the modeling

esults ( Messe et al., 2014 ). We show that several data variables calcu-

ated from the empirical neuroimaging data can be classified into a few

orrelative types depending on their contribution to the model fitting

or individual subjects and for the brain parcellations from the same

r different brain atlases. In this respect, the variation of the fitting re-

ults for personalized models across subjects and parcellations can, to a

reater extent, be accounted for by the variation of the considered data

ariables. 

. Methods and materials 

.1. Empirical data 

Empirical SC and FC used for the derivation and validation of the

athematical models were extracted for 272 healthy unrelated subjects

144 females, average age 28.5 ± 3.5 [mean ± std] years) from the Hu-

an Connectome Project (HCP; https://www.humanconnectome.org/ )

 Van Essen et al., 2013 ) S1200 public release with complete dwMRI and

esting-state fMRI data. 

Structural connectivity Empirical SC approximating the anatomical ax-

nal tracts in the brain ( Conturo et al., 1999 ) was extracted from pre-

https://www.humanconnectome.org/
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Fig. 1. Variation of the region size for the considered brain parcellations. ( A ) 

Distributions of the region size (the number of 1 mm isocubic voxels) and ( B ) 

the corresponding relations between the mean or median and the spread of the 

region size are depicted versus all considered parcellations. The spread of the 

region size is reflected by the standard deviation (STD) or interquartile range 

(IQR) as indicated in the legends. 
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rocessed dwMRI data. To do this, we developed an in-house pipeline

onsisting of FSL version 5.0 ( Jenkinson et al., 2012 ), Freesurfer 6.0

 Fischl et al., 2001 ), ANTs 3.0 ( Tustison et al., 2014 ), and MRtrix3

.0 ( Tournier et al., 2019 ). The main pre-processing steps included de-

oising, bias-field correction, removal of eddy-current-induced distor-

ions and motion correction (dwMRI), normalization of image inten-

ity (T1-weighted image), co-registering the diffusion data with the T1-

eighted image, estimation of the transformation function from the

NI standard template to the native diffusion space, and segmentation

nd application of tissue masks in the diffusion space. Then the whole-

rain tractography (WBT) was calculated by the probabilistic fiber track-

ng algorithm (iFOD2) based on the multi-shell-multi-tissue constrained

pherical deconvolution algorithm ( Jeurissen et al., 2014 ), which was

ealized in MRtrix3, where 10 million streamlines were obtained. The

racking algorithm used voxels in the white-mater mask for seeding of

racts with the maximal angle in 45 degrees between successive steps.

inally, the resulting SC was extracted from the calculated WBT accord-

ng to a given brain parcellation defining a set of brain regions (parcels),

here any two parcels were selected as seed and target regions for the

ompression of WBT to the parcellation-based SC. The output is two

 ×𝑁 matrices of SC containing the empirical streamline counts (eSC)

nd the averaged empirical streamline path lengths (ePL) between any

air from 𝑁 brain regions of the considered brain parcellation. 

Resting-state functional connectivity The empirical FC was calculated

rom the resting-state fMRI data which was ICA FIX denoised as pro-

ided by the HCP repository ( Glasser et al., 2013; Griffanti et al., 2014;

alimi-Khorshidi et al., 2014 ). Similar to the extraction of the empirical

C, also for the calculation of the empirical FC, the brain was split into

 set of regions according to a given brain parcellation, and the mean

OLD signals (averaged over all voxels in any region) were calculated

or all parcels. The extracted BOLD signals were then cross-correlated by

earson correlation resulting in 𝑁 ×𝑁 empirical FC (eFC) matrices for

ach subject. The HCP repository provided 4 resting-state fMRI sessions

1200 volumes, TR = 720 ms) for each considered subject correspond-

ng to the scans with two different phase-encoding directions repeated

n two different days. This accordingly resulted in 4 eFC matrices for

ach subject. Additionally, the BOLD signals from all 4 scanning sessions

ere concatenated, and 5 eFC matrices were obtained in total for each

ubject. 

Brain parcellation The empirical SC and FC were calculated for 11

rain parcellations using the Schaefer and Shen atlases based on the

esting-state functional connectivity ( Schaefer et al., 2018; Shen et al.,

013 ), and the Harvard-Oxford atlas based on the anatomy of corti-

al folding ( Desikan et al., 2006 ). Several variations of these atlases

ere considered: the Schaefer atlas with 100, 200, 400 and 600 cortical

arcels (denoted as S100, S200, S400 and S600, respectively), the Shen

tlas with 79, 156 and 232 cortical regions (denoted as Shen79, Shen156

nd Shen232), and the probabilistic Harvard-Oxford atlas with 96 non-

verlapping cortical parcels with thresholds at 0%, 25%, 35%, and 45%

f the maximal probability (denoted as HO96 0%, HO96 25%, HO96

5%, and HO96 45%, respectively). For higher thresholding, voxels that

id not reach the threshold level were excluded, and for 45% threshold

he left supracalcarine cortex region contained no supra threshold voxels

educing the number of parcels to 95 for HO96 45%. 

Finer granularity for the Schaefer and Shen atlases and larger thresh-

ld for the Harvard-Oxford atlas led to smaller brain regions of the cor-

esponding parcellations as illustrated in Fig. 1 A. The main difference

etween the considered atlases is that the brain regions are more homo-

eneous in size for the Schaefer and Shen atlases than for the Harvard-

xford atlas. However, the size spread decayed together with the aver-

ge size such that the relations between them little changed for vary-

ng granularity and probability threshold, albeit overall differences be-

ween the three parcellation families [ Fig. 1 B]. The variation of the at-

ases, their parcellation granularity and probability threshold affected

(  

3 
he properties of the empirical data used for the model derivation and

alidation as discussed in Section 3.3 below. 

.2. Models and simulated data 

In this study we considered two models. The first model is an ensem-

le of coupled phase oscillators of Kuramoto type ( Kuramoto, 1984 ) 

𝜑̇ 𝑗 ( 𝑡 ) = 2 𝜋𝑓 𝑗 + 

𝐶 

𝑁 

𝑁 ∑
𝑛 =1 

𝑤 𝑗𝑛 sin ( 𝜑 𝑛 ( 𝑡 − 𝜏𝑗𝑛 ) − 𝜑 𝑗 ( 𝑡 )) + 𝜂𝑗 , (1) 

𝑗 = 1 , 2 , … , 𝑁, 

here 𝜑 𝑗 are the phases, 𝑁 is the number of oscillators, 𝑓 𝑗 are the nat-

ral frequencies (frequencies of the uncoupled oscillators, measured in

ertz (Hz), and the time 𝑡 in the model and delay in coupling are thus

easured in seconds), and 𝐶 is the parameter of the global coupling. Pa-

ameters 𝑤 𝑗𝑛 and 𝜏𝑗𝑛 represent the individual coupling weight and prop-

gation delay in the coupling, respectively, from oscillator 𝑛 to oscillator

, and 𝜂𝑗 is an independent noise uniformly distributed in the interval

−0 . 3 , 0 . 3] . This system was used to model by the observable 𝑥 𝑗 = sin ( 𝜑 𝑗 )
he dynamics of the empirical BOLD signal of the 𝑗th brain region (par-

el) according to a given brain parcellation as explained above, where

he number of oscillators 𝑁 in model (1) was equal to the number of

rain parcels. 

Another investigated model is a system of coupled generic limit-cycle

LC) oscillators that are the normal form of the supercritical Hopf bifur-
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Fig. 2. Examples of model (1) validation against empirical data. Fitting of the simulated FC (sFC) to eFC (upper row, A-C ) and to eSC (lower row, D-F ) for S100 

parcellation. ( A, D ) Similarity (Pearson correlation coefficient) between the simulated and empirical data is encoded in color versus parameters of the global delay 

𝜏 and coupling 𝐶, where the optimal parameter points of the best fit are indicated by white circles, and the next 4 largest values are depicted by blue diamonds. 

The corresponding sFC matrices of the best fit compared with eFC and eSC, respectively, are depicted in the middle column ( B and E ), whereas the corresponding 

eFC matrix and normalized by its mean eSC matrix are shown in the right column of the upper ( C ) and lower ( F ) row, respectively. The simulated and empirical FC 

matrices are shown in the same scale for comparison. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version 

of this article.) 
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ation ( Kuznetsov, 1998 ) 

̇  𝑗 ( 𝑡 ) = 

(
𝑎 𝑗 + i2 𝜋𝑓 𝑗 − |𝑧 𝑗 ( 𝑡 ) |2 

)
𝑧 𝑗 ( 𝑡 ) 

+ 

𝐶 

𝑁 

𝑁 ∑
𝑛 =1 

𝑤 jn 

(
𝑧 𝑛 
(
𝑡 − 𝜏jn 

)
− 𝑧 𝑗 ( 𝑡 ) 

)
+ 𝜉𝑗 , 

𝑗 = 1 , 2 , … , 𝑁, (2) 

here 𝑧 𝑗 ( 𝑡 ) = 𝑥 𝑗 ( 𝑡 ) + i 𝑦 𝑗 ( 𝑡 ) are the complex variables of individual oscil-

ators, and i = 

√
−1 is the imaginary unit. Without coupling ( 𝐶 = 0 ), all

scillators of ensemble (2) independently and uniformly rotate around

he origin on the limit cycles with individual radii 
√

𝑎 𝑗 and with indi-

idual natural frequencies 𝑓 𝑗 measured in Hz. The independent complex

oise 𝜉𝑗 is uniformly distributed in the interval [−0 . 3 , 0 . 3] . The empirical

OLD signal of region 𝑗 was modeled by the variable 𝑥 𝑗 ( 𝑡 ) . 
The model parameters 𝑓 𝑗 , 𝑎 𝑗 , 𝑤 𝑗𝑛 and 𝜏𝑗𝑛 are extracted from the em-

irical data for each individual subject, and the personalized models

1) and (2) were simulated separately for each subject. The natural fre-

uencies 𝑓 𝑗 of the phase and LC oscillators were calculated from the

mpirical BOLD signals extracted from the corresponding brain regions

s the frequencies of the maximal spectral peaks discarding the frequen-

ies below 0.01 Hz and above 0.1 Hz. Similar approach for defining the

ocal model parameters was also used in other studies for the phase and

C oscillators ( Deco et al., 2019; 2017; Ponce-Alvarez et al., 2015 ). The

mplitude parameters 𝑎 𝑗 of LC oscillators (2) were selected proportion-

lly to the extent of time fluctuations of empirical BOLD signals of indi-

idual parcels. For this, the normalized standard deviation 𝑠𝑡𝑑( BOLD 𝑗 )
as used to calculate 𝑎 𝑗 such that the mean and the standard deviation

ver all parcels were ⟨𝑎 𝑗 ⟩ = 0 . 5 and 𝑠𝑡𝑑( 𝑎 𝑗 ) = 0 . 4 , respectively. 

The coupling weights 𝑤 𝑗𝑛 and delays 𝜏𝑗𝑛 were derived from the eSC

nd ePL, respectively. The parameters 𝑤 𝑗𝑛 were calculated as the nor-

alized number of SC streamlines 𝑤 𝑗𝑛 = 𝑘 𝑗𝑛 ∕ 
⟨
𝑘 𝑗𝑛 

⟩
, where 𝑘 𝑗𝑛 is the

umber of streamlines connecting regions 𝑗 and 𝑛 , and ⟨⋅⟩ denotes the en-

emble averaging over the entire 𝑁 ×𝑁 matrix with zero diagonal. The

atrix of the streamline counts 𝑒𝑆𝐶 = 

{
𝑘 𝑗𝑛 

}
thus defined the coupling
4 
eights and the graph of the model network. The delays 𝜏𝑗𝑛 were calcu-

ated as 𝜏𝑗𝑛 = 𝐿 𝑗𝑛 ∕ 𝑉 , where 𝐿 𝑗𝑛 is the average path length of the stream-

ines connecting regions 𝑗 and 𝑛 , and 𝑉 is an average velocity of signal

ropagation. The matrix 𝑒𝑃 𝐿 = 

{
𝐿 𝑗𝑛 

}
can thus be used to calculate the

elays 𝜏𝑗𝑛 in the coupling, which can be rewritten as 𝜏𝑗𝑛 = 𝜏 ⋅ 𝐿 𝑗𝑛 ∕ 
⟨
𝐿 𝑗𝑛 

⟩
,

here 𝜏 = 

⟨
𝐿 𝑗𝑛 

⟩
∕ 𝑉 is the global (or average) delay. In models (1) and

2) the self-connections were excluded ( 𝑤 𝑗𝑗 = 0 ) by putting the diagonal

lements in the matrices eSC and ePL to zero: 𝑘 𝑗𝑗 = 𝐿 𝑗𝑗 = 0 . The param-

ters of the global coupling 𝐶 and the global delay 𝜏 can be used to

cale the extent of the coupling in the system and the average velocity

 , respectively, and were varied to fit the model to empirical data. 

.2.1. Model validation 

For each set of the model parameters, the models (1) and (2) were

umerically simulated, and the matrix of the simulated functional con-

ectivity (sFC) was calculated by Pearson correlation between the sim-

lated BOLD signals 𝑥 𝑗 , 𝑗 = 1 , 2 , … , 𝑁 . sFC was compared with the ma-

rices of the empirical connectivity eFC and eSC, where the similarity

etween them was calculated by Pearson correlation, i.e., corr (sFC , eFC)
r corr (sFC , eSC) between the corresponding upper triangular parts. The

odel fitting for the phase oscillators (1) is illustrated in Fig. 2 . For

iven eFC and eSC [ Fig. 2 C and F], the model parameters 𝜏 and 𝐶 were

aried, and the similarity between sFC and the empirical connectivity

atrices was calculated for each parameter point ( 𝜏, 𝐶) [ Fig. 2 A and D].

mong all tested parameter values, the optimal values were selected cor-

esponding to the best model fit, i.e., where the similarity is maximal

 Fig. 2 A and D, while circles]: 

it ( sFC , eFC ) = max 
( C , 𝜏) 

corr ( sFC , eFC ) , 

Fit ( sFC , eSC ) = max 
( 𝐶, 𝜏) 

corr ( sFC , eSC ) . 
(3) 

he goodness-of-fit values Fit (sFC , eFC) of the functional model fitting

an be used to evaluate the similarity between the simulated patterns

f synchronization between oscillators of systems (1) and (2) and the

esting-state BOLD dynamics as given by eFC matrix. On the other



O.V. Popovych, K. Jung, T. Manos et al. NeuroImage 236 (2021) 118201 

h  

s  

t  

2  

a  

r  

c  

F  

l  

t  

g

 

p  

a  

j  

F  

e  

e

a  

p  

s  

H  

4  

s  

p  

[  

r  

m  

F  

t  

a  

m

 

s  

c  

b  

l  

T  

t  

t  

f  

t  

m

3

 

f  

T  

b  

o  

m  

c  

i  

e  

a  

w  

t  

e  

i  

v

3

 

s  

a  

w  

a  

4  

g  

d  

o  

[  

b  

s  

f  

o  

H  

a

 

c  

F  

t  

l  

p  

g  

c  

t  

a  

s  

d  

i  

a  

p  

w  

t  

“  

𝑝

 

m  

t  

c  

t  

a  

a  

s  

p  

c  

f  

e  

F  

t  

p

 

w  

F  

a  

S  

v  

f  

y  

n  

3  

l  

s  

S  

F

 

a  

F  

m  
and, the structure-functional model fitting Fit (sFC , eSC) evaluates how

trongly the model dynamics can replicate the underlying network struc-

ure as for the structure-function relationship in the brain ( Honey et al.,

009; Messe, 2019; Park and Friston, 2013; Zimmermann et al., 2019 )

nd for which parameters and dynamical regimes. Examples of the cor-

espondence between sFC and empirical data are illustrated in Fig. 2 ,

ompare sFC matrices in Fig. 2 B and E with eFC and eSC in Fig. 2 C and

, respectively. For further analysis, optimal model parameters were se-

ected from each parameter space as in Fig. 2 A and D (white circles)

ogether with the corresponding maximal similarity values Fit ( ⋅, ⋅) , i.e.,

oodness-of-fit of the model defined by Eq. (3) . 

As mentioned above, the two models were simulated for 11 brain

arcellations (4 for the Schaefer atlas, 4 for the Harvard-Oxford atlas

nd 3 for the Shen atlas) defining 11 simulation conditions for each sub-

ect. Simulation for each condition resulted in 5 parameter planes like in

ig. 2 A and D of comparison between sFC and eFC (each subject had 5

FCs), and one plane of comparison between sFC and eSC. Each param-

ter plane spanned the range [0 , 94] × [0 , 0 . 945] of the coupling delay 𝜏

nd strength 𝐶, respectively, and contained a grid of 48 × 64 parameter

oints. For each of these parameter points the models were numerically

imulated (model run) for random initial conditions by the stochastic

eun integration method with fixed Δ𝑡 = 0 . 06 s integration step during

000 s, where the last 3500 s were used for sFC evaluation (the first 500

 were skipped as transient). From each parameter plane one optimal

arameter point ( 𝜏, 𝐶) was extracted and collected for further analysis

 Fig. 2 A and D, white circles], where the maximal similarities (3) were

eached. For the considered 272 subjects we analyzed 272 × 5 = 1360

aximal similarities Fit 𝑖 (sFC , eFC) ( 𝑖 = 1 , 2 , … , 1360 ) and 272 values of

it 𝑖 (sFC , eSC) ( 𝑖 = 1 , 2 , … , 272 ) and the corresponding optimal parame-

ers ( 𝜏𝑖 , 𝐶 𝑖 ) for each of 11 simulation conditions (brain parcellations)

nd 2 models. These values were derived from more than 18 millions of

odel runs. 

For statistical analyses, we related the vectors Fit 𝑖 ( ⋅, ⋅) (we omit the

ubscripts in what follows) across subjects between different brain par-

ellations and models to evaluate the similarity and interdependencies

etween modeling results with regard to simulation conditions (parcel-

ations and models) as well as statistical properties of the empirical data.

he similarity was evaluated by the Pearson correlation coefficients and

heir statistical significance as provided by the corrcoeff function in Oc-

ave. Fischers z-transform was applied to the correlation coefficients be-

ore (and after) performing arithmetic operations (e.g., averaging) and

esting. For multivariate analysis the standard multiple linear regression

odel (MLR) was employed. 

. Results 

In what follows we first illustrate the results of the model fitting

or all considered subjects, parcellations, fitting modalities and models.

hen we present two approaches to evaluate and explain the impact of

rain parcellations on the inter-subject and inter-parcellation variability

f the obtained modeling results. As our first approach, the results of the

odel fitting, i.e., the Fit-values of the maximal similarity (3) and the

orresponding optimal model parameters ( 𝜏, 𝐶) were compared across

ndividual subjects and between different brain parcellations and mod-

ls. We evaluated the inter-parcellation variability of the fitting patterns

cross individual subjects. In the second approach, several data variables

ere calculated from individual empirical data and used to account for

he variation of the goodness-of-fit across subjects for each of the consid-

red brain parcellations as well as among them. Thereby, we assess the

nfluence of individual data properties on intra- and inter-parcellation

ariability of the model fitting. 

.1. Results of model fitting 

The distributions of the maximal similarity Fit(sFC, eFC) of the fitting

FC to eFC are illustrated in Fig. 3 A and E for the considered brain atlases
5 
nd the two simulation models. The impact of the atlases is apparent

hen comparing the differences between Fit(sFC, eFC) for the Schaefer

tlas (S100-S600, blue violins), the Harvard-Oxford atlas (HO96 0%-

5%, yellow - dark red violins) and the Shen atlas (Shen79-Shen232,

reen violins). In the latter cases (HO96 and Shen) the both models

emonstrate much higher fitting to the empirical data with up to 80%
f the relative increase of Fit(sFC, eFC) with respect to S100-S600 cases

supplementary Table A.1]. The differences in the model fitting can also

e observed between the parcellations of the same type, i.e., from the

ame atlas. In particular, the best fit for the Schaefer atlas was obtained

or S200 case providing an optimal spatial scale for this brain atlas. For

ther atlases Fit(sFC, eFC) monotonically decays when the threshold for

O96 atlas or the number of parcels for the Shen atlas increases [ Fig. 3 A

nd E]. 

Results of a systematic statistical testing of Fit(sFC, eFC) for all

onsidered simulation conditions (11 parcellations) are illustrated in

ig. 3 B and F, where the 𝑝 -values of the paired Wilcoxon signed-rank

est are depicted in color for comparisons between different parcel-

ations. The dark color (darker than yellow) at the intersection of a

articular row and column of the shown matrices indicates that the

oodness-of-fit for the condition from the vertical axis Fit (row) is statisti-

ally larger (with 𝑝 < . 05 at least) than Fit (column) for the condition from

he horizontal axis accordingly. For example, Fit (S200) > Fit (S100) as well

s Fit (S200) > Fit (S400) and Fit (S200) > Fit (S600) , where the cells at the inter-

ection of the row “S200 ” and columns “S100 ”, “S400 ” and “S600 ” are

ark and marked by “> ” implying 𝑝 < . 05 . We also confirm that the qual-

ty of the model fitting decays for larger probability threshold for HO96

tlas and for more parcels for the Shen atlas [ Fig. 3 B and F]. Shen79

rovides the best fit for both models, whereas the lowest goodness-of-fit

as obtained for S100 for the phase model and for S400 and S600 for

he LC model, see the row “Shen79 ” and columns “S100 ”, “S400 ” and

S600 ” in Fig. 3 B and F. The effect size associated with the presented

 -values is illustrated in supplementary Fig. A.1. 

The maximal similarity Fit(sFC, eFC) is achieved at the optimal

odel parameters as illustrated in Fig. 2 A (white circle). Distributions of

he optimal model parameters ( 𝜏, 𝐶) for the model fitting to the empiri-

al functional data eFC for all subjects are shown as one-dimensional his-

ograms in Fig. 3 C and G, and as two-dimensional histograms in Fig. 3 D

nd H for a few selected parcellations. We found that Fit(sFC, eFC) is

ttained at the optimal parameters remarkably concentrated towards

mall delay 𝜏 and moderate values of coupling 𝐶 for all considered brain

arcellations and models. Somewhat broader distribution of the optimal

oupling can be observed for the Shen atlas for the phase model but not

or the LC model [ Fig. 3 C6 and G6]. Further examples of the param-

ter planes averaged over all subjects are illustrated in supplementary

ig. A.2 together with the distributions of the optimal model parame-

ers taking into account up to 5 largest similarity values per individual

arameter plane [ Fig. 2 A and D, white circles and blue diamonds]. 

The situation is different for the structure-function relationship,

here sFC is fitted to eSC (count matrix) [ Fig. 2 D-F] as illustrated in

ig. 4 . In particular, the maximal similarity monotonically decays in

 well-pronounced manner when the granularity of the Schaefer and

hen atlases decreases for both models [ Fig. 4 A and E, blue and green

iolins, supplementary Table A.1 ]. In contrast, Fit(sFC, eSC) increases

or larger threshold for HO96 atlas and the LC model [ Fig. 4 E and F,

ellow-red violins]. On the other hand, the behavior of the Fit-values is

on-monotonic for the phase model, where the thresholds of 25% and

5% are optimal for the structure-functional model fitting for HO96 at-

as and phase model [ Fig. 4 A and B]. The highest and the lowest corre-

pondence between the simulated and empirical data was obtained for

hen79 and S600, respectively, for both models, see also supplementary

ig. A.1 for effect size. 

The distributions of the optimal model parameters for Fit(sFC, eSC)

lso exhibit a deviation from those for Fit(sFC, eFC) as illustrated in

ig. 4 (compare to Fig. 3 ). Interestingly, the best structure-functional

odel fitting can be achieved for small and very well localized values
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Fig. 3. Results of the functional model fitting for ( A - D ) phase model (1) and ( E - H ) LC model (2) . ( A, E ) Distributions of the maximal similarity values Fit(sFC, 

eFC) as violin plots for the considered brain parcellations denoted on the horizontal axes as introduced in Methods, where the medians and the interquartile ranges 

are also shown. ( B, F ) Outcomes of statistical tests, where the 𝑝 -values (corrected for multiple comparisons) of the paired Wilcoxon signed-rank test of the Fit(sFC, 

eFC) values between the parcellations indicated on the axes are depicted by color in logarithmic scale (see color bar). The null hypothesis is rejected with 𝑝 < . 05 
(indicated by arrow on the color bar) in favor of the alternative hypothesis Fit (row) > Fit (column) for parcellations in the row and column, respectively, where the 

corresponding cell is dark (small 𝑝 -value) and contains the inequality sign “> ”. ( C,D,G,H ) Distributions of the corresponding optimal model parameters, where the 

one- and two-dimensional histograms of the occurrence frequency of the optimal parameters are, respectively, plotted as step-wise curves ( C, G ) and depicted in 

color ( D, H ) ranging from white (small values) to black (large values) for the parcellations indicated in the legends and plots. (For interpretation of the references 

to colour in this figure legend, the reader is referred to the web version of this article.) 
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f the global coupling 𝐶 and for broadly distributed delay 𝜏 [ Fig. 4 C

nd D] when compared to the functional fitting modality. The latter

roperty is somewhat reduced for the LC model as compared to the

hase model [ Fig. 4 G and H]. Nevertheless, positive delay in coupling

s still important to obtain the best model fitting in this case for both

odels, see supplementary Fig. A.2 for more details and comparison

etween the phase and LC models. 
6 
.2. Inter-parcellation variability of fitting results 

To explore the variability of the fitting results over brain parcella-

ion, in this section we analyze the similarity among the goodness-of-

t vectors Fit( ⋅, ⋅) (3) collected for all subjects and fMRI scan sessions

see Methods) calculated for different parcellations and models. The Fit-

alues were correlated across subjects for any two parcellations for the
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Fig. 4. Results of the structure-functional model fitting for ( A - D ) phase model (1) and ( E - H ) LC model (2) . ( A, E ) Distributions of the maximal similarity values 

Fit(sFC, eSC) for the considered brain parcellations, where the medians and the interquartile ranges are also shown. ( B, F ) Outcomes of statistical tests, where the 

corrected for multiple comparisons 𝑝 -values of the paired Wilcoxon signed-rank test of the Fit(sFC, eSC) values between the parcellations indicated on the axes are 

depicted by color in logarithmic scale (see color bar). The null hypothesis is rejected with 𝑝 < . 05 (indicated by arrow on the color bar) in favor of the alternative 

hypothesis Fit (row) > Fit (column) for parcellations in the row and column, respectively, where the corresponding cell is dark (small 𝑝 -value) containing the inequality 

sign “> ”. ( C,D,G,H ) Distributions of the corresponding optimal model parameters, where the one- and two-dimensional histograms of the occurrence frequency are, 

respectively, plotted as step-wise curves ( C, G ) and depicted in color ( D, H ) ranging from white (small values) to black (large values) for the parcellations indicated 

in the legends and plots. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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ame as well as different models to evaluate how strongly the variation

f the brain parcellation and model can affect the inter-subject patterns

f the goodness-of-fit and assess the reliability of the fitting results. 

The pairwise correlations of the maximal similarity Fit(sFC, eFC) be-

ween any two of the considered brain parcellations are shown for the

hase model in Fig. 5 A and LC model in Fig. 5 B. We observe that the

tting results are well correlated for parcellations within the same at-

as/parcellation family, i.e., among S100-S600 parcellations and within
7 
O96 and Shen atlases. The average intra-atlas correlations are 0.82 for

he phase model [ Fig. 5 A] and 0.86 for the LC model [ Fig. 5 B]. On the

ther hand, the similarity of the model fitting patterns between different

tlases is reduced, which holds for both models, and the corresponding

verage inter-atlas correlations are 0.59 and 0.71, for the phase and LC

odels, respectively. The inter-subject patterns of the goodness-of-fit

it(sFC, eFC) are preserved for both dynamical models as illustrated in

ig. 5 C, where the phase model was used for parcellations on the vertical
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Fig. 5. Correspondence between the patterns of the inter-individual variation of the fitting results (Fit-values (3) ) for the considered parcellations and models. The 

vectors of the Fit-values collected over all subjects and scans (see Methods for details) were Pearson correlated with each other for any two parcellations (indicated 

on the axes) for ( A - C ) Fit(sFC, eFC) and ( D - F ) Fit(sFC, eSC), and for ( A, D ) phase model and ( B, E ) LC model. In plots ( C and F ) the correspondence between 

the phase model (parcellations on the vertical axes) and LC model (parcellations on the horizontal axes) is illustrated. The results are depicted by color, and their 

magnitudes are indicated in the plots. The crossed out cells indicate that the corresponding correlation does not reach the statistical significance with 𝑝 < . 05 . The 

heavy red lines delineate the parcellations from the same atlas (parcellation family). (For interpretation of the references to colour in this figure legend, the reader 

is referred to the web version of this article.) 
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xis, and the LC model was simulated for parcellations on the horizontal

xis. As for the inter-parcellation correspondence of the fitting results

or the same model [ Fig. 5 A and B], similar amount of stronger intra-

nd weaker inter-atlas correlation is observed for the between-model

omparison [ Fig. 5 C]. 

The same conclusion can be drawn for the structure-functional model

tting Fit(sFC, eSC) as illustrated in Fig. 5 D for the phase model and in

ig. 5 E for the LC model. Here, the parcellations from the same atlas also

gree much better with each other than for the parcellations from dif-

erent atlases. The results also demonstrate that Fit-values obtained for

O96 parcellations and the LC model [ Fig. 5 E] are relatively dissimilar

o the other two atlases of brain parcellations. Furthermore, the similar-

ty Fit(sFC, eSC) seems to be sensitive to the model used for simulation

s illustrated in Fig. 5 F. The fitting results of the LC model for S100-

600 parcellations weakly correlate with those obtained for all other

arcellations for the phase model. For other atlases, the fitting results

f LC model are either practically independent of those obtained for the

hase model (for the Shen atlas), or even weakly anti-correlate with the

ther model (for HO96 atlas) even for the same brain parcellation/atlas

 Fig. 5 F]. 
8 
Changing the brain parcellation can also influence the values of the

ptimal parameters, where the maximal similarity (3) is achieved. The

airwise parameter differences are illustrated in supplementary Fig. A.3

or the considered parcellations and models. Similar to the correlation

etween the Fit-values [Fig. 5] , the parcellations from the same atlas are

xpected to lead to smaller variations of the optimal parameters than

etween those from different atlases. Interestingly, the variation of the

ptimal parameters is larger for the functional model fitting modality,

specially, for the between-model comparison than for the structure-

unction correspondence. In the latter case the parameter distance be-

ween models remarkably mimics the similarity patterns of the corre-

ation between fitting results, compare Fig. 5 F and supplementary Fig.

.3F. 

.3. Data variables 

In the next Section 3.4 we evaluate how the maximal model-data

imilarity (3) obtained for the optimal model parameters depends on

elected statistical properties of the empirical data used for the model

erivation and validation. To this end, we calculated several data vari-
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Fig. 6. Variation of the data variables extracted for the considered brain parcellations. In columns 1 and 2 , the distributions of the data variables (indicated on the 

vertical axes) for all subjects/fMRI sessions are depicted versus the parcellations (indicated on the horizontal axes). In column 3 , the correspondence between the data 

variables among all considered parcellations is illustrated. For any two parcellations (indicated on the axes), the Pearson cross-correlation between the corresponding 

data variables was calculated across all subjects for ( A3 ) 𝑎𝑣𝑒𝑟 [ 𝑠𝑡𝑑( BOLD )] , ( B3 ) 𝑠𝑡𝑑[ 𝑎𝑣𝑒𝑟 ( eFC )] , ( C3 ) 𝑐𝑜𝑟𝑟 ( eFC , eSC ) , and ( D3 ) 𝑎𝑣𝑒𝑟 [ 𝑠𝑡𝑑( eSC )] as indicated in the titles 

of the plots. The results are depicted by color, and their magnitudes are also printed in the plots. The crossed out cells indicate that the corresponding correlation 

does not reach the statistical significance with 𝑝 < . 05 . The heavy red lines delineate the parcellations from the same atlas (parcellation family). (For interpretation 

of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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bles (or indices) for each subject and fMRI scan session. For the em-

irical BOLD signals we calculated the standard deviation of their time

uctuations 𝑠𝑡𝑑( BOLD ) averaged over all parcels 𝑎𝑣𝑒𝑟 [ 𝑠𝑡𝑑( BOLD )] . Since

he BOLD signals were extracted as mean signals averaged over all

oxels in the parcels, the latter data variable may reflect the extent

f synchronization of BOLD dynamics within the individual brain re-

ions. Indeed, the amplitude of the mean signal is expected to increase

ith enhanced synchronization as the theory of synchronization implies

 Kuramoto, 1984 ). On the other hand, calculating the variability of time

uctuations among parcels 𝑠𝑡𝑑 [ 𝑠𝑡𝑑 ( BOLD )] may give an insight into the

ifference of individual parcels in this respect. 
9 
Smaller brain regions, e.g., for finer granularity (Schaefer, Shen) or

arger probability threshold (HO96) can be suspected to be more homo-

eneous with respect to the BOLD dynamics. We observed that mean

OLD signals exhibit enhanced fluctuations for smaller parcels demon-

trating larger standard deviation 𝑠𝑡𝑑( BOLD ) [ Fig. 6 A1], where the dis-

ributions of 𝑎𝑣𝑒𝑟 [ 𝑠𝑡𝑑( BOLD )] exhibit the behavior inverse to that of the

arcels’ size versus the considered brain parcellations [ Fig. 1 A]. The

ame holds for 𝑠𝑡𝑑 [ 𝑠𝑡𝑑 ( BOLD )] [ Fig. 6 A2, but see Shen232]. Our calcu-

ations thus indicate that the intra-region dynamical homogeneity (syn-

hronization) may increase together with the inter-region variability of

t. However, a systematic investigation of the collective dynamics of
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f  
OLD signals within parcels is necessary to assess the intra-region dy-

amical homogeneity ( Schaefer et al., 2018 ). Interestingly, the distri-

utions of both mentioned data variables across individual subjects ex-

ibit very similar patterns for any of the considered atlases and strongly

orrelate across subjects for any pair of parcellations, see Fig. 6 A3 for

𝑣𝑒𝑟 [ 𝑠𝑡𝑑( BOLD )] , where the minimal correlation 𝑟 ≈ 0 . 96 is attained for

600. 

Additional data variables can be calculated from eFC by evaluation

f its column-wise mean 𝑎𝑣𝑒𝑟 ( eFC ) and the standard deviation 𝑠𝑡𝑑( eFC ) ,
here the former represents the average functional connectivity (syn-

hronization) of a region to the rest of the brain (i.e., other regions),

nd the latter stands for the extent of variation of the individual con-

ections of a given brain region. Evaluating the mean and the standard

eviation once more across all brain regions we obtain four data vari-

bles: 𝑎𝑣𝑒𝑟 [ 𝑎𝑣𝑒𝑟 ( eFC )] , 𝑠𝑡𝑑[ 𝑎𝑣𝑒𝑟 ( eFC )] , 𝑎𝑣𝑒𝑟 [ 𝑠𝑡𝑑( eFC )] , and 𝑠𝑡𝑑[ 𝑠𝑡𝑑( eFC )] .
he distributions of the first two are illustrated in Fig. 6 B1 and B2,

here the total average inter-region synchronization 𝑎𝑣𝑒𝑟 [ 𝑎𝑣𝑒𝑟 ( eFC )] in
he brain decays with decreasing region size, which is also in agree-

ent with the behavior observed for BOLD signals [ Fig. 6 A2]. The inter-

egion variation of the regional synchronization to the rest of the brain

𝑡𝑑[ 𝑎𝑣𝑒𝑟 ( eFC )] does not demonstrate very pronounced dynamics with

espect to the considered parcellations [ Fig. 6 B2]. However, the inter-

arcellation patterns of its distribution appears to be similar to those

bserved for the functional similarity Fit(sFC, eFC) [ Fig. 3 A and E]. An

xample of the cross-parcellation correlation for the later data variable

s illustrated in Fig. 6 B3, where the level of correlation is still very high

ith 𝑟 ≳ 0 . 91 except for S100 which distinguishes from the other parcel-

ations. 

Further data variables can be the extent of correlation between the

mpirical connectivity matrices eFC, eSC and ePL, which may influ-

nce the quality of the model fitting and are denoted as 𝑐𝑜𝑟𝑟 ( eFC , eSC ) ,
𝑜𝑟𝑟 ( eFC , ePL ) and 𝑐𝑜𝑟𝑟 ( eSC , ePL ) . Examples of the distributions of these

ariables are shown in Fig. 6 C1 and C2, where both illustrated variables

pparently demonstrate a monotonic behavior with respect to the par-

el size, but in opposite directions, i.e., 𝑐𝑜𝑟𝑟 ( eFC , eSC ) decreases, and

𝑜𝑟𝑟 ( eFC , ePL ) increases when the region size decays. The impact of the

tate-of-the-art brain parcellations on the structure-function relationship

𝑜𝑟𝑟 ( eFC , eSC ) was investigated by Messe (2019) , and a similar global

ecrease in correlation with decreasing the parcellation granularity and

egions size was reported. For these data variables the difference be-

ween the atlases becomes more pronounced, where the correspondence

correlation) between the data indices for the parcellations of the same

tlas are stronger than for those from different atlases [ Fig. 6 C3] as was

hown for the results of the model validation and optimal parameters

 Fig. 5 and supplementary Fig. A.3]. 

This effect is further enhanced for the data variables derived from

C matrices, for example, for 𝑎𝑣𝑒𝑟 [ 𝑠𝑡𝑑( 𝑒𝑆𝐶)] [ Fig. 6 D3]. The data vari-

bles 𝑎𝑣𝑒𝑟 [ 𝑠𝑡𝑑( eSC )] and 𝑎𝑣𝑒𝑟 [ 𝑠𝑡𝑑( ePL )] calculated from the eSC and ePL

atrices normalized by their mean as used in the models always attain

arger values for finer granularity/smaller brain regions [ Fig. 6 D1 and

2]. This is similar to the variables 𝑐𝑜𝑟𝑟 ( eFC , ePL ) [ Fig. 6 C2] and those

erived from BOLD signals [ Fig. 6 A1 and A2]. This is however in con-

rast to the data variables calculated from eFC, where the behavior is

ifferent [ Fig. 6 B1, B2 and C1]. The observed increase of the average

nter-region variability of SC matrices [ Fig. 6 D1 and D2] might be sus-

ected when the brain is parcellated into smaller regions that stronger

eviate from each other with respect to individual connectivity prop-

rties. However, a detailed investigation is necessary to clarify the un-

erlying mechanisms of the illustrated behavior of the considered data

ariables [Fig. 6] . 

Further considered data variables in the form 𝑠𝑡𝑑[ 𝑎𝑣𝑒𝑟 ( ⋅)] and

𝑡𝑑 [ 𝑠𝑡𝑑 ( ⋅)] were calculated from the eSC and ePL matrices. The natural

requencies 𝑓 𝑖 of the models (1) and (2) extracted from the frequency

pectra of the empirical BOLD signals (see Methods) were also taken

nto account, and the mean 𝑎𝑣𝑒𝑟 ( 𝑓 𝑖 ) and the standard deviation 𝑠𝑡𝑑( 𝑓 𝑖 )
ere involved in the analysis. 
10 
.4. Correlation between data variables and model fitting 

The variation of the empirical data illustrated in Fig. 6 may influence

he observed variability of the modeling results [ Figs. 3 and 4 ]. There-

ore, to inquire into where the variance of the fitting results across sub-

ects and parcellations may come from, we investigate how the discussed

ata variables and the maximal similarity (3) correlate with each other.

everal such correlative relationships are illustrated in the scatter plots

n Fig. 7 A–C, where, together with linear regressions for individual par-

ellations (color dots and dashed lines), the joint linear regression for

ll data points in the plots (for all 11 parcellations) is also shown by

olid black lines. The observed distinct constellations between the in-

ividual (color dashed) and joint (black solid) regression lines can be

sed to differentiate between a few classes of the data variables with

espect to their relationships to the overall model fitting. For example,

or the data variable 𝑎𝑣𝑒𝑟 [ 𝑠𝑡𝑑( BOLD )] [ Fig. 7 A] we found that the joint

orrelation indicated in the plot appears to be much smaller than the

orrelative relationships obtained separately for each individual par-

ellation. Therefore, the variation of the mentioned data variable can

elatively well account for the variability of the model fitting across in-

ividual subjects for a given parcellation, i.e., for the intra-parcellation

nter-subject variance. However, its explanatory power for the variation

f Fit(sFC, eFC) across considered parcellations is limited. We may thus

efer to such data indices as intra-parcellation variables. 

Another class of the data variables can be illustrated by the data in-

ex 𝑐𝑜𝑟𝑟 ( eFC , eSC ) [ Fig. 7 B]. Here, the joint correlation between the em-

irical data and the model goodness-of-fit across subject data from dif-

erent parcellations can be much higher than the correspondence across

ubjects within individual parcellations. In the considered example, the

cross-subject correlations between the empirical data and results of

he model fitting are mostly small and negative for individual parcel-

ations. Therefore this data variable can hardly explain the variance of

he model fitting across subjects for a given brain parcellation. Never-

heless, the joint correlation for the data merged over all parcellations is

uch stronger contributing to our understanding of the variance of the

tting results across different parcellations. We may thus refer to such

ata indices as inter-parcellation variables. 

For some other data variables, for example, for 𝑠𝑡𝑑[ 𝑎𝑣𝑒𝑟 ( eFC )] the

oint correlation is comparable to the relatively large correlations for

ndividual parcellations [ Fig. 7 C]. The explanatory power of such vari-

bles can thus be extended from single to many parcellations. This in-

icates that such data variables can therefore well account for both the

ariability of the model fitting across subjects within individual parcel-

ations and the differences of Fit-values across parcellations. We may

hus refer to such data indices as the variables of both intra- and inter-

arcellation types. 

The correlations across subjects and scanning sessions between the

imilarity Fit(sFC, eFC) and all mentioned data variables are shown in

ig. 7 D for all considered parcellations. One in particular observes that

here are several data variables that only weakly correlate with Fit(sFC,

FC), which may indicate that the results of the model fitting may little

epend on them. Such conclusion could be made for the mean of the

atural frequencies 𝑎𝑣𝑒𝑟 ( 𝑓 𝑖 ) , average variability of eFC 𝑎𝑣𝑒𝑟 [ 𝑠𝑡𝑑( eFC )]
except for S100 and S200), and also for the data indices derived from

SC and ePL. Notably, the extent of the empirical structure-function re-

ationship 𝑐𝑜𝑟𝑟 ( eFC , eSC ) also little correlates with the correspondence

etween simulated and empirical functional data, see also Fig. 7 B. Put

therwise, increasing/decreasing the agreement between the empirical

tructure (eSC) and function (eFC) seems not to essentially influence the

uality of the model fitting (the similarity between sFC and eFC) or may

ven have a negative effect. This takes place in spite of that the network

odel is constructed from eSC and its output is compared with eFC. 

Other data variables consistently exhibit (anti-)correlation with

it(sFC, eFC) ranging from moderate to relatively strong for most of

he parcellations. This for instance applies to the spread of the natural

requencies 𝑠𝑡𝑑( 𝑓 𝑖 ) , amplitude 𝑎𝑣𝑒𝑟 [ 𝑠𝑡𝑑( BOLD )] of the BOLD signals and
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Fig. 7. Relationship between the fitting results (3) of the phase model (1) and empirical data. ( A-C ) Scatter plots and the corresponding linear regression (straight 

lines) are shown for a few selected data variables from Fig. 6 indicated on the vertical axes versus the maximal similarity Fit(sFC, eFC) (horizontal axes). Each dot 

represents one subject/MRI session, and color corresponds to that used to differentiate between the parcellations in Fig. 6 . The black solid lines depict the joint 

linear regressions for all data in the plots, and the joint correlations 𝑟 are also indicated. ( D, E ) Pearson correlation across individual subjects between the maximal 

similarity Fit(sFC, eFC) and several data variables indicated on the horizontal axis. The correlation was calculated for ( D ) different individual parcellations indicated 

on the vertical axis and ( E ) joint data merged over a few combinations of the considered parcellations as indicated on the vertical axis: all parcellations of the Schaefer 

atlas, Harvard-Oxford atlas, Shen atlas and all 11 considered parcellations (last row). The correlation is depicted by color, and its magnitude is indicated in the plot. 

The crossed out cells indicate that the corresponding correlation does not reach the statistical significance with 𝑝 < . 05 . 
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ome properties of eFC [ Fig. 7 D]. These data variables may be used to

rovide an initial guess of the pattern of the functional model fitting for

ew subjects that supposed to be included in the analysis. However, the

orrelation between eFC and ePL matrices 𝑐𝑜𝑟𝑟 ( eFC , ePL ) seems to have

 different impact on the model validation for different atlases, where

it(sFC, eFC) is practically independent of this data index for the Schae-

er atlas, which is distinct for other atlases [ Fig. 7 D]. Such effects may

lso be useful for understanding the observed differences in the qual-

ty of the model fitting for individual subjects and may also be applied

or explaining the impact of the considered brain parcellations on the

odel fitting [ Fig. 3 A]. 

The above classification of the data variables with respect to their

ntra- or inter-parcellation correlative relationships with the modeling

esults [ Fig. 7 A–C] can be evaluated by comparing the individual corre-

ations in Fig. 7 D to the joint correlation calculated for the data merged

ver the considered parcellations for simultaneous analysis. This is illus-

rated in Fig. 7 E for the phase model and functional model fitting. More

ystematic comparison of the individual and joint correlations between

he results of the model fitting (3) and the data variables is summarized

n Fig. 8 for both models (1) and (2) and both fitting modalities Fit(sFC,

FC) and Fit(sFC, eSC). Much larger individual (joint) correlation than

he joint (individual) one is indicative for an intra- (inter-) parcellation

ata variable. 

The constellation obtained for the phase model [ Fig. 8 A] is well pre-

erved also for the LC model [ Fig. 8 B, see also supplementary Fig. A.4 for

ndividual and joint correlations]. The correlation patterns are different

or the structure-functional fitting modality [ Fig. 8 C and D], where the

esults obtained for the phase and LC models may deviate from each

ther, see also supplementary Fig. A.5 for individual and joint corre-

ations for the structure-functional fitting modality Fit(sFC, eSC). Al-

hough most of the considered data indices exhibiting large correlation

re of inter-parcellation type [Fig. 8] , still there are a few data variables
11 
f intra-parcellation type like 𝑠𝑡𝑑 ( 𝑓 𝑖 ) , 𝑎𝑣𝑒𝑟 [ 𝑠𝑡𝑑 ( BOLD )] or 𝑠𝑡𝑑 [ 𝑠𝑡𝑑 ( eFC )]
or the functional similarity Fit(sFC, eFC) or 𝑠𝑡𝑑( 𝑓 𝑖 ) (phase model) and

𝑣𝑒𝑟 ( 𝑓 𝑖 ) (LC model) for Fit(sFC, eSC). The most pronounced data vari-

bles of both types for Fit(sFC, eFC) are given by the total average inter-

egion synchronization 𝑎𝑣𝑒𝑟 [ 𝑎𝑣𝑒𝑟 ( eFC )] or inter-region variation of the

egional synchronization 𝑠𝑡𝑑[ 𝑎𝑣𝑒𝑟 ( eFC )] [ Fig. 8 A,B]. 

.5. Multiple linear regression model 

The variation of the model fitting across subjects and brain parcella-

ions can be investigated by combining several data variables in a MLR

odel, where they serve as independent (explanatory) variables, and

he maximal similarity Fit(sFC, eFC) is the MLR output, i.e., the depen-

ent variable. The calculated data variables can be used in the MLR

odel to evaluate which variation of the Fit-values across subjects and

arcellations can be explained by the individual empirical data used for

he model derivation and validation. The results of such a regression

ith respect to all data variables [Fig. 7] are illustrated in Fig. 9 for in-

estigated individual parcellations as well as for the joint data merged

ver all parcellations. The fraction of the explained variance increases

hen more data variables get involved in the regression, see Fig. 9 A–

 and compare the indicated 𝑅 

2 -values to the correlation coefficients

n Figs. 7 and 8 . The results of the model fitting for the anatomical

arvard-Oxford and the functional Shen atlases seem to be somewhat

etter explained by the empirical data used for the model derivation

han for the functional Schaefer atlas [ Fig. 9 E, but see Shen232 for LC

odel]. The strongest regression results are obtained for the joint re-

ression for the data merged over all considered parcellations [ Fig. 9 D

nd E]. 

The weights of the discussed data variables within the maximal sim-

larity Fit(sFC, eFC) as reflected by the regression coefficients [ Fig. 9

2-D2] highlight several data variables that are of importance for under-
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Fig. 8. Correlation between the Fit-values (3) and data variables from Fig. 7 jointly for all considered brain parcellations. For the data variables indicated on the 

horizontal axes, the joint correlation for the data merged over all considered parcellations [ Fig. 7 E, last row] is depicted by empty bars. The hatched bars represent 

the correlation for individual parcellations from Fig. 7 D averaged over all parcellations and significant values (i.e., excluding the crossed out cells in Fig. 7 D) as 

indicated in the legends. The data is shown for ( A, B ) functional fitting Fit(sFC, eFC) and ( C, D ) structure-functional fitting Fit(sFC, eSC), and for ( A, C ) phase model 

(1) and ( B, D ) LC model (2) as indicated in the titles of the plots. 
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tanding of the modeling results. All regression coefficients for the inter-

ependency between Fit(sFC, eFC) and the data variables are shown in

ig. 10 for both models including the case of joint data (last rows in the

lots). Comparing the obtained results for individual parcellations and

odels, we observe that the regression coefficients well agree between

he two models. There are several data indices that consistently and

trongly contribute to the Fit-values and seem to have a major impact on

he model fitting for many parcellations, see Figs. 9 and 10 . In particular,

he variables 𝑠𝑡𝑑 [ 𝑎𝑣𝑒𝑟 ( eFC )] , 𝑎𝑣𝑒𝑟 [ 𝑠𝑡𝑑 ( eFC )] and 𝑐𝑜𝑟𝑟 ( eFC , eSC ) have the

ost notable regression coefficients. At the level of individual parcella-

ions, there is also a minor impact of other variables, for example, the

atural frequencies 𝑠𝑡𝑑( 𝑓 𝑖 ) , average total connectivity 𝑎𝑣𝑒𝑟 [ 𝑎𝑣𝑒𝑟 ( eFC )]
nd its variability 𝑠𝑡𝑑 [ 𝑠𝑡𝑑 ( eFC )] as well as structure-function relation-

hip with ePL matrix 𝑐𝑜𝑟𝑟 ( eFC , ePL ) . For the inter-parcellation variance

f Fit(sFC, eFC), additional variables can be taken into account, that

re 𝑐𝑜𝑟𝑟 ( eFC , ePL ) and 𝑎𝑣𝑒𝑟 [ 𝑠𝑡𝑑( eSC )] as suggested by the MLR model

Fig. 10] . 

Similar results can also be obtained for the structure-functional

odel fitting and the maximal similarity Fit(sFC, eSC) [supplementary

ig. A.6]. Here we however find that Fit(sFC, eSC) less consistently de-

ends on the data variables over individual parcellations and with a

educed agreement between different models as reflected by the MLR

oefficients. The only data indices that reliably contribute to the inter-

ndividual variation of the Fit-values for most of the parcellations are

hose extracted from the natural frequencies 𝑎𝑣𝑒𝑟 ( 𝑓 𝑖 ) and 𝑠𝑡𝑑( 𝑓 𝑖 ) , while

he latter is again less reliable for the LC model [supplementary Fig.

.6 A and B]. The fractions of the Fit(sFC, eSC) variance explained by

he data variables for individual parcellations is reduced as compared

o the functional model fitting [compare Fig. 9 E and supplementary Fig.

.6 D]. However, the inter-parcellation variance as reflected by the joint

ata can still be relatively well accounted for by the empirical data [sup-

lementary Fig. A.6 C], and the largest MLR coefficients of the joint data

or both models are obtained for the structural connectome eSC and ePL

supplementary Fig. A.6 A and B]. 
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.6. Group-level inter-parcellation variations 

In the previous sections the interdependence between the results of

he model validation and empirical data were evaluated by correlation

f the Fit-values with the data variables across individual subjects ei-

her for any parcellation separately or for joint data merged over all

onsidered parcellations. While the former approach investigates the

nter-subject intra-parcellation variance, the latter also considers the

ariation of the variables among parcellations. The inter-parcellation

ariation of the fitting results can also be addressed at the group level

nly, i.e, separated from the inter-subject variations. This can be accom-

lished when the data calculated for individual subjects is compressed

nto single values, for example, to medians, see Figs. 3 and 4 . The be-

avior of the group-averaged values across individual parcellations can

rovide an informed expectation on how a given parcellation may in

verage influence the considered variables, for example, the Fit-values

r the data indices. 

In this section we correlate the medians of the Fit-values and the

onsidered data variables across parcellations. The results of the calcu-

ations are illustrated in Fig. 11 . Several data variables exhibit strong

orrespondence with the Fit-values for both models. However, only a

ew of them are significantly correlated as indicated by hatched bars for

he phase model and empty bars with heavy borders for the LC model

 Fig. 11 A and D]. For the functional modal fitting, only two data indices

𝑡𝑑[ 𝑎𝑣𝑒𝑟 ( eFC )] and 𝑐𝑜𝑟𝑟 ( eFC , eSC ) significantly and strongly contribute

o the inter-parcellation variance of Fit(sFC, eFC) at the group level for

oth models [ Fig. 11 A], see also Fig. 11 B and C for the corresponding

catter plots, where the fraction of the explained variance can reach 93% .

For the structure-functional model fitting, more data variables signif-

cantly correlate with the maximal similarity Fit(sFC, eSC) [ Fig. 11 D].

owever, only four of them fulfill this requirement for both models si-

ultaneously: 𝑐𝑜𝑟𝑟 ( eFC , eSC ) that also contributes to Fit(sFC, eFC), as

ell as data variables 𝑎𝑣𝑒𝑟 [ 𝑠𝑡𝑑 ( eSC )] , 𝑠𝑡𝑑 [ 𝑎𝑣𝑒𝑟 ( ePL )] and 𝑎𝑣𝑒𝑟 [ 𝑠𝑡𝑑( ePL )]
alculated from the structural connectome as given by eSC and ePL ma-
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Fig. 9. Modeling the maximal similarity Fit(sFC, eFC) by the multiple linear regression (MLR) model with data variables from Fig. 7 as independent variables. ( A1 

- D1 ) Scatter plots with regression lines of the Fit-values predicted by MLR versus Fit(sFC, eFC) obtained by simulations of the phase model (1) . The diagonals are 

depicted by thin black lines for comparison. ( A2 - D2 ) The corresponding regression coefficients with the standard deviation for z-scored data obtained from the 

model fitting for parcellations ( A ) S200 and ( B ) HO96 0%, ( C ) Shen79 and ( D ) for joint data merged over all considered parcellations as indicated in the corresponding 

scatter plots. The gray bars indicate the regression coefficients, where the statistical significance with 𝑝 < . 05 was not achieved. The fractions of the explained variance 

𝑅 

2 are also shown in the scatter plots and in plot ( E ) for all individual parcellations for both phase and LC models as indicated in the legend. The dashed lines depict 

𝑅 

2 for the joint data also indicated in the legend. 
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rices. Again, the fraction of the explained variance can reach 93% for

he data index calculated from eSC, see Fig. 11 D-F also for the corre-

ponding scatter plots. Interestingly, for the structure-functional fitting

odality also the data indices derived from eFC matrices seem to signif-

cantly contribute to the fitting values Fit(sFC, eSC) for the phase model

 Fig. 11 D], although the corresponding 𝑝 -values are close to the signif-

cance threshold of 0.05 after correction for multiple comparisons. 

. Discussion 

We investigated the impact of data parameters used for the pre-

rocessing of the empirical neuroimaging data on the structure and dy-

amics of whole-brain dynamical models derived from and validated

gainst empirical data. In this study we focused on brain parcellations

nd considered three brain atlases as defined by the functional Schaefer

tlas with 100, 200, 400 and 600 cortical regions ( Schaefer et al., 2018 ),

unctional Shen atlas with 79, 156 and 232 cortical regions ( Shen et al.,

013 ), and the anatomical Harvard-Oxford atlas of 96 cortical regions
13 
ith a few thresholds of the maximal probability ( Desikan et al., 2006 )

hat also influenced the region size. Here we did not aim to suggest

n optimal atlas, which is a complex task given the numerous existing

arcellation approaches, brain atlases and multiplicity of possible opti-

ization criteria. Instead, we illustrated possible effects that the consid-

red brain parcellations can have on the modeling results. For this we

nalyzed the results of the model validation for two fitting modalities

s given by the maximal similarities Fit(sFC, eFC) and Fit(sFC, eSC) and

or two models of coupled phase and limit-cycle oscillators. We also sug-

ested an approach to account for the parcellation-induced inter-subject

nd inter-parcellation variability of the fitting results. 

We compared the distributions of the Fit-values and the correspond-

ng optimal parameters for individual subjects and reported on pro-

ounced differences in the model fitting between the considered brain

arcellations. In particular, Fit(sFC, eFC) for the Schaefer atlas is much

maller than that for the Harvard-Oxford and Shen atlases [Fig. 3] . The

atter atlases seem to provide appropriate parcellations for high corre-

pondence between simulated and empirical functional data. The better
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Fig. 10. Regression coefficients of the MLR model for Fit(sFC, eFC), for all considered parcellations including the joint data as indicated on the vertical axes and for 

( A ) phase model and ( B ) LC model. The values are depicted by color, and they magnitudes are shown in the plots. The crossed out cells indicate that the corresponding 

coefficient does not reach the statistical significance with 𝑝 < . 05 . 
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tting for HO96 0% as compared to S100 was also observed for the

odel of coupled phase oscillators simulating the high-frequency elec-

rical activity of brain regions in 𝛼 and 𝛾 frequency bands ( Manos et al.,

019 ). For the structure-functional model fitting Fit(sFC, eSC) the sit-

ation is different, and the difference between the atlases is less pro-

ounced [Fig. 4] . 

We demonstrated that the best correspondence Fit(sFC,eFC) between

imulated and empirical FCs was achieved at 200 parcels for the Schae-

er atlas [Fig. 3] suggesting that an optimal spatial scale may exist, see

lso ( Arslan et al., 2018; Proix et al., 2016 ). However, the best func-

ional model fitting for the other brain atlases was achieved at the coars-

st granularity (Shen atlas) or smallest probability threshold (Harvard-

xford atlas), where the parcel size is maximal. On the other hand, the

aximal values of the structure-functional model fitting Fit(sFC, eSC)

ere achieved at the largest region size for the Schaefer and Shen at-

ases [Fig. 4] . For the Harvard-Oxford atlas, Fit(sFC, eSC) exhibited ei-

her non-monotonic behavior with the optimal probability thresholds at

5%–35% for the phase model or even monotonically increased for the

C model when the region size decreased. We thus observed a remark-

ble exchange of the distribution patterns of Fit(sFC, eFC) and Fit(sFC,

SC) between the Schaefer and Harvard-Oxford atlases and different be-

avior of the Fit-values with respect to the parcel size. These findings

omplicate the problem of the optimal spatial scale of brain parcellation.
14 
The corresponding distributions of the optimal model parameters

owever manifest very similar shapes for the same fitting modality

lso for different atlases and parcellations, but differ across fitting

odalities [ Figs. 3 and 4 ]. In particular, the optimal parameters for

it(sFC, eFC) are strongly concentrated towards zero delay, whereas the

tructure-function correspondence Fit(sFC, eSC) for many subjects was

lso achieved for large delay, especially, for the phase model. This is

ccompanied by a narrow interval of the coupling strength in the latter

ase, whereas this parameter can broadly be distributed for the func-

ional fitting, especially, for the Shen atlas and phase model. Therefore,

he direct modeling of the resting-state BOLD dynamics by slowly os-

illating phase or limit-cycle oscillators can safely be performed by sys-

ems without delay ( Deco et al., 2019; 2017; Ponce-Alvarez et al., 2015 ),

owever, only for the fitting of the simulated and empirical functional

ata. 

The impact of the brain parcellations on the model validation can

e investigated by evaluation of how the fitting results Fit ( ⋅, ⋅) calcu-

ated for individual subjects and a given parcellation agree with those

ound for other parcellations. We thus correlated Fit-values for different

arcellations across subjects and calculated the distance between the

orresponding optimal model parameters. It appeared that Fit-values

or the parcellations within the same atlas better correlate with each

ther than across different atlases for both fitting modalities Fit(sFC,
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Fig. 11. Correlation between the results of the model fitting and data variables at the group level. ( A, D ) Pearson correlation across pacellations between the medians 

evaluated over all subjects of the data variables and the corresponding medians of ( A ) Fit(sFC, eFC) and ( D ) Fit(sFC, eSC). The hatched bars for the phase model and 

empty violet bars with heavy borders for the LC model stand for statistically significant ( 𝑝 < . 05 ) correlation coefficients. ( B,C,E,F ) Scatter plots of the medians of 

the data variables versus ( B, C ) Fit(sFC, eFC) and ( E, F ) Fit(sFC, eSC) with the corresponding regression lines. Each plot symbol corresponds to one of the considered 

parcellations. The fractions of the explained variance (squared correlation) for both models are indicated in the legends. 
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v  
FC) and Fit(sFC, eSC) and both considered models [Fig. 5] . The same

s true for the distance between the optimal parameters, where they less

eviate from each other for the parcellations from the same atlas than

etween atlases [supplementary Fig. A.3]. It is interesting to note that

either different numbers of brain regions for the Schaefer and Shen

tlases nor different level of thresholding for the Harvard-Oxford atlas

an cause differences in the cross-subject correspondence in the model

tting larger than those between different atlases even for parcellations

ith similar region size. The inter-atlas differences cannot simply be re-

uced to differentiation between anatomical and functional parcellation

pproaches considered in this study. This indicates that a parcellation

amily (atlas) shares some particular properties that are reflected in the

esults of the model fitting and preserved even for varying other “inter-

al ” parcellation parameters (e.g., granularity or probability threshold

ffecting region size). This conclusion is also preserved for between-

odel comparison for Fit(sFC, eFC), whereas the structure-functional

tting results Fit(sFC, eSC) obtained for the LC model demonstrated en-

anced sensitivity, especially, for the Harvard-Oxford atlas [Fig. 5] . 

To understand the origin of the observed variation of the fitting re-

ults across subjects and brain parcellations, we suggested to evaluate
15 
ow the Fit-values depend on a few data variables (or data indices) re-

ecting some statistical properties of the empirical data used for the

odel derivation and validation. The performed regressive analysis be-

ween Fit-values and data variables suggested that the latter can be split

nto a few classes depending on their explanatory power for ( i ) inter-

ubject Fit-variance for individual parcellations; ( ii ) inter-subject Fit-

ariance across parcellations for joint data; and ( iii ) both inter-subject

it-variance within individual parcellations and across them [ Figs. 7

nd 8 ]. 

The bivariate analysis provided correlation between Fit-values and

ndividual data variables, where the squared correlation with Fit(sFC,

FC) across subjects can reach 𝑅 

2 = 64% for individual parcellations

nd 35% for joint data merged over all considered parcellations [ Fig. 7

nd supplementary Fig. A.4]. For the structure-functional model fitting

it(sFC, eSC), this quantity may range up to 40% for the variance across

ubjects for individual parcellations and about 62% for joint data [sup-

lementary Fig. A.5]. The inter-subject fluctuations of the Fit-values

ay be better accounted for if several data variables are used in the

LR model [Fig. 9] . With the multivariate approach, the inter-subject

ariance of Fit(sFC, eFC) and Fit(sFC, eSC) can be explained up to 77%
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nd 56% within individual parcellations and up to 76% and 77% for joint

ata, respectively [ Fig. 9 and supplementary Fig. A.6]. Finally, if the

ariance of the fitting results across parcellations is considered at the

roup level only (as medians), the individual data variables correlate

ith the fitting values up to 𝑅 

2 = 93% [Fig. 11] . 

Evaluating the effect that a given parcellation can have on the data

ariables, which reliably, strongly and significantly correlate with the

tting values as investigated in this study, can help to explain and pre-

ict the results of the model fitting before involving computationally

xpensive model simulations. This can be addressed by investigating

he properties of the empirical data extracted for varying brain par-

ellation. Decrease of the region size due to finer granularity or larger

utting threshold seems to cause two main effects, where both ( i ) the

ntra-region dynamical homogeneity and ( ii ) inter-region heterogeneity

ppeared to increase. This can be concluded from the behavior of the

ean BOLD signals of the brain regions and the extent of total synchro-

ization between regions 𝑎𝑣𝑒𝑟 [ 𝑎𝑣𝑒𝑟 ( eFC )] [Fig. 6] . The inter-region het-

rogeneity seems to increase for smaller regions also for the structural

onnectome as demonstrated by the data variables derived from eSC,

PL. Here, the empirical structure-function relationship 𝑐𝑜𝑟𝑟 ( eFC , eSC )
ecays with decreasing region size as was also reported by Messe (2019) .

t is interesting to note that the correspondence between structure and

unction is larger for the Harvard-Oxford atlas and the coarsest granu-

arity of the Shen atlas as compared to the Schaefer atlas. Investigation

f the impact of brain parcellations on the data variables should also

ake into account inter-subject spatial variability (shape and location)

f brain regions, which seems to influence the cross-subject variability

f the resting-state fMRI data and functional connectivity ( Bijsterbosch

t al., 2018; Kong et al., 2018 ). 

Among the considered data variables only a few indeed exhibit

elatively strong interdependencies with the Fit-values across subjects

nd parcellations [ Figs. 7–11 ]. These sets of the data variables may

ary for different fitting modalities and models. Here, the behavior of

𝑜𝑟𝑟 ( eFC , eSC ) is of special interest, because the empirical structure-

unction correspondence might be suspected to underlie the model fit-

ing results Fit(sFC, eFC) and Fit(sFC, eSC). Our investigations how-

ver showed that 𝑐𝑜𝑟𝑟 ( eFC , eSC ) only weakly anti-correlate with Fit-

alues across subjects for practically all of the considered parcella-

ions [ Fig. 7 and supplementary Figs. A.4 and A.5]. On the other hand,

𝑜𝑟𝑟 ( eFC , eSC ) relatively strongly correlates with the Fit-values for joint

ata [Fig. 8] and can thus potentially be used to explain the varia-

ion of the fitting results between atlases, especially, if the prediction

s performed at the group-averaged level [Fig. 11] . In addition to the

ariable of the structure-function relationship, the attention might also

e paid to other data indices including the average BOLD amplitude

𝑣𝑒𝑟 [ 𝑠𝑡𝑑( BOLD )] , the total synchronization 𝑎𝑣𝑒𝑟 [ 𝑎𝑣𝑒𝑟 ( eFC )] , variability

f the regional synchronization 𝑠𝑡𝑑[ 𝑎𝑣𝑒𝑟 ( eFC )] and the average variabil-

ty of inter-region structural connectivity 𝑎𝑣𝑒𝑟 [ 𝑠𝑡𝑑( eSC )] . Further data in-

ices derived from the path length matrices ePL and natural frequencies

 𝑖 might also be of importance, especially, for the structure-functional

odel fitting Fit(sFC, eSC). 

Examining the similarities and differences in the interdependencies

etween the Fit-values and data variables for individual parcellations,

oint and group-averaged data we may reveal the properties that are cru-

ial for understanding the impact of brain parcellations on the empirical

nd simulated data. In this study we presented several interesting ob-

ervations that require further detailed investigation and explanation,

hich could contribute to the mechanisms influencing the modeling re-

ults. In the first turn, this concerns the counter-intuitive negative de-

endencies (or their absence) between the empirical structure-function

elationship and fitting results at the subject level in contrast to the

roup level as discussed above. Understanding the relationship between

he fitting results and other data variables, especially, for different fit-

ing modalities is also important. In this respect, we observed that the

arcellation-induced variability of the structure-functional model fitting

cross subjects appears to be sensitive to the model and parcellation
16 
onsidered, whereas the functional fitting is relatively robust against

ifferent parcellations and models [Fig. 5] . Another issue relates with

he mechanism of how the parcellation granularity and region size in-

uence the correspondence between empirical and simulated functional

nd structural connectomes, which was found to be a difficult problem

lready for empirical data ( Messe, 2019 ). We suggested to address these

uestions by separating the inter-subject and inter-parcellation variabil-

ty of the modeling results and their investigation by inspecting the data

ndices computed from the empirical data. This approach needs to be

onfirmed and refined for more parcellations, models and datasets. 

In this study we used the HCP dataset, where the data quality is close

o a perfect physiological noise reduction. Examining different process-

ng strategies and their parameters can be an object of investigation for

urther studies. In addition, other measures of similarity between sim-

lated and empirical data can be used to verify the obtained results,

or example, the amount of metastability or similarity between simu-

ated and empirical dynamic FC ( Deco et al., 2017 ). The generalization

f the reported results should be based on profound hypothesis testing

nvolving sophisticated statistical methods for evaluation and compar-

son of correlation ( Wilcox and Rousselet, 2018 ). On the other hand,

nstead of similarity measures based on correlative relationships one

ay utilize linear models that could resolve some issues connected with

eteroscedasticity of the data ( Thirion et al., 2015 ). Some other data

ndices may be calculated from empirical data. For example, the graph-

heoretical network properties of the empirical connectome may be in-

olved in the analysis as well ( Rubinov and Sporns, 2010 ). Selecting and

nvestigating a few most important data variables with respect to their

mpact on the modeling results, and on a data-driven analysis of brain

etworks, could advance our understanding of the results’ variability

cross subjects and parcellations. 
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