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Modern approaches to investigate complex brain dynamics suggest to represent the brain as a functional network
of brain regions defined by a brain atlas, while edges represent the structural or functional connectivity among
them. This approach is also utilized for mathematical modeling of the resting-state brain dynamics, where the
applied brain parcellation plays an essential role in deriving the model network and governing the modeling
results. There is however no consensus and empirical evidence on how a given brain atlas affects the model
outcome, and the choice of parcellation is still rather arbitrary. Accordingly, we explore the impact of brain
parcellation on inter-subject and inter-parcellation variability of model fitting to empirical data. Our objective
is to provide a comprehensive empirical evidence of potential influences of parcellation choice on resting-state
whole-brain dynamical modeling. We show that brain atlases strongly influence the quality of model validation
and propose several variables calculated from empirical data to account for the observed variability. A few classes
of such data variables can be distinguished depending on their inter-subject and inter-parcellation explanatory

power.

1. Introduction

Investigation of brain dynamics during task-evoked and resting-state
activity is frequently based on the inspection of corresponding func-
tional networks that are collections of brain regions with enhanced syn-
chronization among them (Bolt et al., 2017; Cole et al., 2014; Park and
Friston, 2013). Neither nodes nor edges of such networks can uniquely
be defined, especially, for the resting-state brain activity. State-of-the-
art approaches range from voxel-wise nodes resulting in huge networks
defined by the number of voxels in the underlying neuroimaging data
to nodes encircling entire brain regions either as neuronal foci co-
activated during a specific task or parcellated according to other cri-
teria (Stanley et al., 2013). In the latter case, the brain regions are
defined based on a certain brain parcellation (Eickhoff et al., 2018b;
Stanley et al., 2013; Thirion et al., 2014), which reduces the dimension-
ality of the brain data by merging hundred thousands of voxels from

high-resolution neuroimaging data into a few hundreds up to thousand
of brain regions. A unified brain parcellation could improve the inter-
pretability and comparability of results for different subjects and studies
and increase the effective signal-to-noise ratio. However, there are many
ways to parcellate the brain into separate regions (or parcels), which is
actively debated in the literature (Eickhoff et al., 2018b; Stanley et al.,
2013; Thirion et al., 2014). There is a sparse empirical evidence for the
effect of a particular atlas choice, but see Refs. (Messe, 2019; Pervaiz
et al., 2020; Zimmermann et al., 2019) for recent reports.

The great variety of possible techniques for creating brain parcella-
tions and existing brain atlases makes the choice of a particular parcel-
lation for a given analysis very difficult (Eickhoff et al., 2018a). At least
two paradigmatically distinct approaches can be used for the parcella-
tion, where the brain regions are defined based either on their anatom-
ical or functional properties. For example, the cortex can be parcellated
into regions according to its folding properties, e.g., into gyral-based
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parcels encircled by tracing from the depth of one sulcus to another
(Desikan et al., 2006). A very different parcellation approach is based
on the brain function, where the patterns of the resting-state functional
connectivity (FC) can be used to group the voxels (or vertices) into
parcels of similar connectivity (Schaefer et al., 2018; Shen et al., 2013).
The latter can be evaluated either according to a global similarity mea-
sure combined with abrupt changes in the local gradient of the whole-
brain intrinsic FC (Schaefer et al., 2018) or based on the graph theory
with application of a multigraph clustering approach to the resting-state
FC (Shen et al., 2013). From the above anatomical and functional ap-
proaches to brain parcellation, one may assume that the latter could
be more appropriate for calculation of the whole-brain FC, where the
parcels are suspected to be composed of voxels with higher functional
homogeneity. However, the detailed effects of these two distinct par-
cellation techniques on the results of data analysis and modeling can
hardly be predicted by a simple theoretical reasoning.

Utilizing a brain parcellation is essential for dynamical modeling of
brain activity, where the brain regions are represented as nodes of a
network model (Honey et al., 2009). The selected brain parcellation is
involved in the extraction of the structural connectivity (SC), inferred
from diffusion-weighted magnetic resonance imaging (dwMRI), which
serves as proxies for anatomical connections between brain regions at
the meso- and macroscopic level (Hagmann et al., 2010). This SC can
then be used to estimate the coupling strength and communication de-
lay between the nodes of the model network contributing in such a way
to the model derivation (Deco et al., 2011; Ghosh et al., 2008). Further-
more, the selected parcellation can be used to extract the blood oxygen
level-dependent (BOLD) signals inferred from functional magnetic reso-
nance imaging (fMRI) and calculate the empirical FC. The latter can be
compared to simulated FC calculated from simulated BOLD time series
generated by the derived model, thus validating the simulation results
against the empirical data (Cabral et al., 2011; Deco and Jirsa, 2012).
As a consequence, this process crucially depends on the empirical data
used for the model derivation (e.g., SC) and fitting (e.g., FC), which in
turn is affected by the data processing, in particular, by the selected
brain parcellation (Messe, 2019; Pervaiz et al., 2020; Popovych et al.,
2019; Zimmermann et al., 2019).

In this study we therefore simulate the resting-state brain activity
using dynamical mathematical models to investigate the effects of brain
parcellations. Functional and anatomical brain atlases with different res-
olutions are used for model validation against empirical resting-state
functional and structural connectivity data. We consider three represen-
tatives from the above parcellation classes as given by the anatomical
Harvard-Oxford atlas (Desikan et al., 2006) and the functional Schae-
fer (Schaefer et al., 2018) and Shen (Shen et al., 2013) atlases. The ef-
fects of brain parcellation are studied in detail with two systems of cou-
pled phase and limit-cycle oscillators suggested for modeling cortical
oscillations and resting-state BOLD dynamics (Breakspear et al., 2010;
Cabral et al., 2011; Deco et al., 2019; 2017; Fukushima and Sporns,
2018; Ponce-Alvarez et al., 2015). The effects are investigated by an ex-
tensive exploration of the model parameter space. The models are fitted
against empirical data of individual subjects for a set of varying condi-
tions, in particular, the granularity of the parcellation for Schaefer and
Shen atlases and the maximal probability threshold for Harvard-Oxford
atlas affecting the size of brain regions.

The number of parcels is an important parameter, which may influ-
ence the results of the mathematical modeling, the empirical structure-
function relationship as well as the prediction of human behavior from
the patterns of brain connectivity (Honey et al., 2009; Messe, 2019; Per-
vaiz et al., 2020; Proix et al., 2016; Zimmermann et al., 2019) and de-
serves a systematic modeling investigation (Popovych et al., 2019). In
the paper (Proix et al., 2016) the authors explored the impact of parcella-
tions and local connectivity on the dynamics of neural mass models with
and without delays, where the different parcellations were obtained by
randomly splitting the brain regions of the Desikan-Killiany atlas into
smaller subregions. It was in particular identified that spatial attractors
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of slow brain dynamics were qualitatively not affected by the number of
regions in the cortical parcellation, whereas the parcellation granular-
ity influenced their critical range in the global coupling strength. On the
other hand, the richness of fast dynamics of the response to perturba-
tions increased only if delays were considered in the model, suggesting
an optimal parcellation scale, which can be decomposed into only a few
spatial patterns. The work of Zimmermann et al. (2019) exposed a sub-
ject specificity to the association between empirical structural and func-
tional connectomes for six different datasets and brain parcellations. It
was however shown that intra-subject specificity of the SC-FC fit was
achieved only for one of the considered cases indicating that select-
ing an appropriate brain parcellation was critical to provide enough
statistical information to individually link SC and FC. The structure-
function relationships between empirical SC and FC were also investi-
gated for several brain parcellations with various spatial resolutions by
Messe (2019) revealing a significant effect of brain parcellation on the
SC-FC correlation driven by the number of brain regions. In the paper
(Pervaiz et al., 2020) the impact of brain parcellation on the predic-
tive power of data-driven models was analyzed regarding the relation-
ship between whole brain functional connectivity patterns and behav-
ioral traits in an attempt to find the optimal parcellation among other
conditions.

In this study we analyze the parcellation-induced differences of
model validation against empirical data for two approaches to brain
parcellation based on anatomical or functional brain data. Furthermore,
we test for an effect on two different models of limit-cycle and phase os-
cillators distinguished whether the amplitude of the simulated BOLD
signals is taken into account or not, respectively. We consider func-
tional and structure-functional fitting modalities for the model vali-
dation against empirical data. We aim to evaluate whether and how
different parcellations may influence the modeling results and suggest
possible approaches to explain inter-subject and inter-parcellation vari-
ation of model fitting. In our approach, we study the contribution of
different features of the experimental data, which can vary with the
pre-processing and chosen parcellation, to the ability of mathematical
models to make an individualized link between simulated and empir-
ical connectomes. We demonstrate that the considered atlases lead to
substantially different results when comparing the model fit for parcel-
lations within and between the anatomical and functional parcellation
families. This is especially the case for the quality of the model vali-
dation, structure of the model parameter space and reliability of the
fitting results. To understand the origin of the observed behavior of the
model fitting, we also evaluate how the properties of the empirical data
used for model derivation and validation may influence the modeling
results (Messe et al., 2014). We show that several data variables calcu-
lated from the empirical neuroimaging data can be classified into a few
correlative types depending on their contribution to the model fitting
for individual subjects and for the brain parcellations from the same
or different brain atlases. In this respect, the variation of the fitting re-
sults for personalized models across subjects and parcellations can, to a
greater extent, be accounted for by the variation of the considered data
variables.

2. Methods and materials
2.1. Empirical data

Empirical SC and FC used for the derivation and validation of the
mathematical models were extracted for 272 healthy unrelated subjects
(144 females, average age 28.5 + 3.5 [mean+std] years) from the Hu-
man Connectome Project (HCP; https://www.humanconnectome.org/)
(Van Essen et al., 2013) S1200 public release with complete dwMRI and
resting-state fMRI data.

Structural connectivity Empirical SC approximating the anatomical ax-
onal tracts in the brain (Conturo et al., 1999) was extracted from pre-
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processed dwMRI data. To do this, we developed an in-house pipeline
consisting of FSL version 5.0 (Jenkinson et al., 2012), Freesurfer 6.0
(Fischl et al., 2001), ANTs 3.0 (Tustison et al., 2014), and MRtrix3
3.0 (Tournier et al., 2019). The main pre-processing steps included de-
noising, bias-field correction, removal of eddy-current-induced distor-
tions and motion correction (dAwMRI), normalization of image inten-
sity (T1-weighted image), co-registering the diffusion data with the T1-
weighted image, estimation of the transformation function from the
MNI standard template to the native diffusion space, and segmentation
and application of tissue masks in the diffusion space. Then the whole-
brain tractography (WBT) was calculated by the probabilistic fiber track-
ing algorithm (iFOD2) based on the multi-shell-multi-tissue constrained
spherical deconvolution algorithm (Jeurissen et al., 2014), which was
realized in MRtrix3, where 10 million streamlines were obtained. The
tracking algorithm used voxels in the white-mater mask for seeding of
tracts with the maximal angle in 45 degrees between successive steps.
Finally, the resulting SC was extracted from the calculated WBT accord-
ing to a given brain parcellation defining a set of brain regions (parcels),
where any two parcels were selected as seed and target regions for the
compression of WBT to the parcellation-based SC. The output is two
N x N matrices of SC containing the empirical streamline counts (eSC)
and the averaged empirical streamline path lengths (ePL) between any
pair from N brain regions of the considered brain parcellation.

Resting-state functional connectivity The empirical FC was calculated
from the resting-state fMRI data which was ICA FIX denoised as pro-
vided by the HCP repository (Glasser et al., 2013; Griffanti et al., 2014;
Salimi-Khorshidi et al., 2014). Similar to the extraction of the empirical
SC, also for the calculation of the empirical FC, the brain was split into
a set of regions according to a given brain parcellation, and the mean
BOLD signals (averaged over all voxels in any region) were calculated
for all parcels. The extracted BOLD signals were then cross-correlated by
Pearson correlation resulting in N X N empirical FC (eFC) matrices for
each subject. The HCP repository provided 4 resting-state fMRI sessions
(1200 volumes, TR = 720 ms) for each considered subject correspond-
ing to the scans with two different phase-encoding directions repeated
on two different days. This accordingly resulted in 4 eFC matrices for
each subject. Additionally, the BOLD signals from all 4 scanning sessions
were concatenated, and 5 eFC matrices were obtained in total for each
subject.

Brain parcellation The empirical SC and FC were calculated for 11
brain parcellations using the Schaefer and Shen atlases based on the
resting-state functional connectivity (Schaefer et al., 2018; Shen et al.,
2013), and the Harvard-Oxford atlas based on the anatomy of corti-
cal folding (Desikan et al., 2006). Several variations of these atlases
were considered: the Schaefer atlas with 100, 200, 400 and 600 cortical
parcels (denoted as S100, S200, S400 and S600, respectively), the Shen
atlas with 79, 156 and 232 cortical regions (denoted as Shen79, Shen156
and Shen232), and the probabilistic Harvard-Oxford atlas with 96 non-
overlapping cortical parcels with thresholds at 0%, 25%, 35%, and 45%
of the maximal probability (denoted as HO96 0%, HO96 25%, HO96
35%, and HO96 45%, respectively). For higher thresholding, voxels that
did not reach the threshold level were excluded, and for 45% threshold
the left supracalcarine cortex region contained no supra threshold voxels
reducing the number of parcels to 95 for HO96 45%.

Finer granularity for the Schaefer and Shen atlases and larger thresh-
old for the Harvard-Oxford atlas led to smaller brain regions of the cor-
responding parcellations as illustrated in Fig. 1A. The main difference
between the considered atlases is that the brain regions are more homo-
geneous in size for the Schaefer and Shen atlases than for the Harvard-
Oxford atlas. However, the size spread decayed together with the aver-
age size such that the relations between them little changed for vary-
ing granularity and probability threshold, albeit overall differences be-
tween the three parcellation families [Fig. 1B]. The variation of the at-
lases, their parcellation granularity and probability threshold affected
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Fig. 1. Variation of the region size for the considered brain parcellations. (A)
Distributions of the region size (the number of 1 mm isocubic voxels) and (B)
the corresponding relations between the mean or median and the spread of the
region size are depicted versus all considered parcellations. The spread of the
region size is reflected by the standard deviation (STD) or interquartile range
(IQR) as indicated in the legends.

the properties of the empirical data used for the model derivation and
validation as discussed in Section 3.3 below.

2.2. Models and simulated data

In this study we considered two models. The first model is an ensem-
ble of coupled phase oscillators of Kuramoto type (Kuramoto, 1984)

N
. C .
;0 =2 f; + ; wj, sin(@,(t = 7;,) = @; (1) + ;. ¢))

j=12...,N,

where ¢; are the phases, N is the number of oscillators, f; are the nat-
ural frequencies (frequencies of the uncoupled oscillators, measured in
hertz (Hz), and the time ¢ in the model and delay in coupling are thus
measured in seconds), and C is the parameter of the global coupling. Pa-
rameters w;, and z;, represent the individual coupling weight and prop-
agation delay in the coupling, respectively, from oscillator » to oscillator
Jj, and n; is an independent noise uniformly distributed in the interval
[-0.3,0.3]. This system was used to model by the observable x ;= sin(g;)
the dynamics of the empirical BOLD signal of the jth brain region (par-
cel) according to a given brain parcellation as explained above, where
the number of oscillators N in model (1) was equal to the number of
brain parcels.

Another investigated model is a system of coupled generic limit-cycle
(LC) oscillators that are the normal form of the supercritical Hopf bifur-
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Fig. 2. Examples of model (1) validation against empirical data. Fitting of the simulated FC (sFC) to eFC (upper row, A-C) and to eSC (lower row, D-F) for S100
parcellation. (A, D) Similarity (Pearson correlation coefficient) between the simulated and empirical data is encoded in color versus parameters of the global delay
7 and coupling C, where the optimal parameter points of the best fit are indicated by white circles, and the next 4 largest values are depicted by blue diamonds.
The corresponding sFC matrices of the best fit compared with eFC and eSC, respectively, are depicted in the middle column (B and E), whereas the corresponding
eFC matrix and normalized by its mean eSC matrix are shown in the right column of the upper (C) and lower (F) row, respectively. The simulated and empirical FC
matrices are shown in the same scale for comparison. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version

of this article.)

cation (Kuznetsov, 1998)

z;(n) = (a»+i2n’fj—

£ 3

lz;(01%)z; ()

t—r n) —Z;(0) + &,
ji=1,2,....N, )

where z;(f) = x;() + iy;(t) are the complex variables of individual oscil-

lators, and i = \/—_1 is the imaginary unit. Without coupling (C = 0), all
oscillators of ensemble (2) independently and uniformly rotate around
the origin on the limit cycles with individual radii NG and with indi-
vidual natural frequencies f; measured in Hz. The independent complex
noise ¢; is uniformly distributed in the interval [-0.3,0.3]. The empirical
BOLD signal of region j was modeled by the variable x;(?).

The model parameters f;, a;, w;, and 7;, are extracted from the em-
pirical data for each individual subject, and the personalized models
(1) and (2) were simulated separately for each subject. The natural fre-
quencies f; of the phase and LC oscillators were calculated from the
empirical BOLD signals extracted from the corresponding brain regions
as the frequencies of the maximal spectral peaks discarding the frequen-
cies below 0.01 Hz and above 0.1 Hz. Similar approach for defining the
local model parameters was also used in other studies for the phase and
LC oscillators (Deco et al., 2019; 2017; Ponce-Alvarez et al., 2015). The
amplitude parameters a; of LC oscillators (2) were selected proportion-
ally to the extent of time fluctuations of empirical BOLD signals of indi-
vidual parcels. For this, the normalized standard deviation std(BOLD )
was used to calculate a; such that the mean and the standard deviation
over all parcels were (a;) = 0.5 and std(a;) = 0.4, respectively.

The coupling weights w);, and delays 7;, were derived from the eSC
and ePL, respectively. The parameters w;, were calculated as the nor-
malized number of SC streamlines w;, = k,,/(k;,), where k;, is the
number of streamlines connecting regions j and n, and (-) denotes the en-
semble averaging over the entire N X N matrix with zero diagonal. The
matrix of the streamline counts eSC = {k j,,} thus defined the coupling

weights and the graph of the model network. The delays z;, were calcu-
lated as z;, = L;,/V, where L, is the average path length of the stream-
lines connecting regions j and n, and V is an average velocity of signal
propagation. The matrix ePL = {L,, } can thus be used to calculate the
delays 7;, in the coupling, which can be rewrittenas z;, =7 - L;,,/ (L n )
where 7 = (L jn> /V is the global (or average) delay. In models (1) and
(2) the self-connections were excluded (w = 0) by putting the diagonal
elements in the matrices eSC and ePL to zero: k;; = L;; = 0. The param-
eters of the global coupling C and the global delay = can be used to
scale the extent of the coupling in the system and the average velocity
V, respectively, and were varied to fit the model to empirical data.

2.2.1. Model validation

For each set of the model parameters, the models (1) and (2) were
numerically simulated, and the matrix of the simulated functional con-
nectivity (sFC) was calculated by Pearson correlation between the sim-
ulated BOLD signals x;, j = 1,2,..., N. sFC was compared with the ma-
trices of the emplrlcal connecthlty eFC and eSC, where the similarity
between them was calculated by Pearson correlation, i.e., corr(sFC, eFC)
or corr(sFC, eSC) between the corresponding upper triangular parts. The
model fitting for the phase oscillators (1) is illustrated in Fig. 2. For
given eFC and eSC [Fig. 2C and F], the model parameters r and C were
varied, and the similarity between sFC and the empirical connectivity
matrices was calculated for each parameter point (z, C) [Fig. 2A and D].
Among all tested parameter values, the optimal values were selected cor-
responding to the best model fit, i.e., where the similarity is maximal
[Fig. 2A and D, while circles]:

Fit(sFC, eFC) =
Fit(sFC,eSC) =

max corr(sFC, eFC),

0 3)
max) corr(sFC, eSC).
The goodness-of-fit values Fit(sFC, eFC) of the functional model fitting
can be used to evaluate the similarity between the simulated patterns
of synchronization between oscillators of systems (1) and (2) and the
resting-state BOLD dynamics as given by eFC matrix. On the other
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hand, the structure-functional model fitting Fit(sFC, eSC) evaluates how
strongly the model dynamics can replicate the underlying network struc-
ture as for the structure-function relationship in the brain (Honey et al.,
2009; Messe, 2019; Park and Friston, 2013; Zimmermann et al., 2019)
and for which parameters and dynamical regimes. Examples of the cor-
respondence between sFC and empirical data are illustrated in Fig. 2,
compare sFC matrices in Fig. 2B and E with eFC and eSC in Fig. 2C and
F, respectively. For further analysis, optimal model parameters were se-
lected from each parameter space as in Fig. 2A and D (white circles)
together with the corresponding maximal similarity values Fit(., -), i.e.,
goodness-of-fit of the model defined by Eq. (3).

As mentioned above, the two models were simulated for 11 brain
parcellations (4 for the Schaefer atlas, 4 for the Harvard-Oxford atlas
and 3 for the Shen atlas) defining 11 simulation conditions for each sub-
ject. Simulation for each condition resulted in 5 parameter planes like in
Fig. 2A and D of comparison between sFC and eFC (each subject had 5
eFCs), and one plane of comparison between sFC and eSC. Each param-
eter plane spanned the range [0, 94] x [0, 0.945] of the coupling delay =
and strength C, respectively, and contained a grid of 48 x 64 parameter
points. For each of these parameter points the models were numerically
simulated (model run) for random initial conditions by the stochastic
Heun integration method with fixed As = 0.06 s integration step during
4000 s, where the last 3500 s were used for sFC evaluation (the first 500
s were skipped as transient). From each parameter plane one optimal
parameter point (z, C) was extracted and collected for further analysis
[Fig. 2A and D, white circles], where the maximal similarities (3) were
reached. For the considered 272 subjects we analyzed 272 x 5 = 1360
maximal similarities Fit;(sSFC,eFC) (i = 1,2, ...,1360) and 272 values of
Fit;(sFC,eSC) (i = 1,2,...,272) and the corresponding optimal parame-
ters (r;,C;) for each of 11 simulation conditions (brain parcellations)
and 2 models. These values were derived from more than 18 millions of
model runs.

For statistical analyses, we related the vectors Fit;(-,-) (we omit the
subscripts in what follows) across subjects between different brain par-
cellations and models to evaluate the similarity and interdependencies
between modeling results with regard to simulation conditions (parcel-
lations and models) as well as statistical properties of the empirical data.
The similarity was evaluated by the Pearson correlation coefficients and
their statistical significance as provided by the corrcoeff function in Oc-
tave. Fischers z-transform was applied to the correlation coefficients be-
fore (and after) performing arithmetic operations (e.g., averaging) and
testing. For multivariate analysis the standard multiple linear regression
model (MLR) was employed.

3. Results

In what follows we first illustrate the results of the model fitting
for all considered subjects, parcellations, fitting modalities and models.
Then we present two approaches to evaluate and explain the impact of
brain parcellations on the inter-subject and inter-parcellation variability
of the obtained modeling results. As our first approach, the results of the
model fitting, i.e., the Fit-values of the maximal similarity (3) and the
corresponding optimal model parameters (z, C) were compared across
individual subjects and between different brain parcellations and mod-
els. We evaluated the inter-parcellation variability of the fitting patterns
across individual subjects. In the second approach, several data variables
were calculated from individual empirical data and used to account for
the variation of the goodness-of-fit across subjects for each of the consid-
ered brain parcellations as well as among them. Thereby, we assess the
influence of individual data properties on intra- and inter-parcellation
variability of the model fitting.

3.1. Results of model fitting

The distributions of the maximal similarity Fit(sFC, eFC) of the fitting
sFC to eFC are illustrated in Fig. 3A and E for the considered brain atlases
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and the two simulation models. The impact of the atlases is apparent
when comparing the differences between Fit(sFC, eFC) for the Schaefer
atlas (S100-S600, blue violins), the Harvard-Oxford atlas (HO96 0%-
45%, yellow - dark red violins) and the Shen atlas (Shen79-Shen232,
green violins). In the latter cases (HO96 and Shen) the both models
demonstrate much higher fitting to the empirical data with up to 80%
of the relative increase of Fit(sFC, eFC) with respect to S100-S600 cases
[supplementary Table A.1]. The differences in the model fitting can also
be observed between the parcellations of the same type, i.e., from the
same atlas. In particular, the best fit for the Schaefer atlas was obtained
for S200 case providing an optimal spatial scale for this brain atlas. For
other atlases Fit(sFC, eFC) monotonically decays when the threshold for
HO96 atlas or the number of parcels for the Shen atlas increases [Fig. 3A
and E].

Results of a systematic statistical testing of Fit(sFC, eFC) for all
considered simulation conditions (11 parcellations) are illustrated in
Fig. 3B and F, where the p-values of the paired Wilcoxon signed-rank
test are depicted in color for comparisons between different parcel-
lations. The dark color (darker than yellow) at the intersection of a
particular row and column of the shown matrices indicates that the
goodness-of-fit for the condition from the vertical axis Fit™") is statisti-
cally larger (with p < .05 at least) than Fit(°"™ for the condition from
the horizontal axis accordingly. For example, Fit$209 > Fit($100) a5 well
as Fit(5200) 5 Rjt(8400) and FitS200) > FjtS600) where the cells at the inter-
section of the row “S200” and columns “S100”, “S400” and “S600” are
dark and marked by “>” implying p < .05. We also confirm that the qual-
ity of the model fitting decays for larger probability threshold for HO96
atlas and for more parcels for the Shen atlas [Fig. 3B and F]. Shen79
provides the best fit for both models, whereas the lowest goodness-of-fit
was obtained for S100 for the phase model and for S400 and S600 for
the LC model, see the row “Shen79” and columns “S100”, “S400” and
“S600” in Fig. 3B and F. The effect size associated with the presented
p-values is illustrated in supplementary Fig. A.1.

The maximal similarity Fit(sFC, eFC) is achieved at the optimal
model parameters as illustrated in Fig. 2A (white circle). Distributions of
the optimal model parameters (z, C) for the model fitting to the empiri-
cal functional data eFC for all subjects are shown as one-dimensional his-
tograms in Fig. 3C and G, and as two-dimensional histograms in Fig. 3D
and H for a few selected parcellations. We found that Fit(sFC, eFC) is
attained at the optimal parameters remarkably concentrated towards
small delay r and moderate values of coupling C for all considered brain
parcellations and models. Somewhat broader distribution of the optimal
coupling can be observed for the Shen atlas for the phase model but not
for the LC model [Fig. 3C6 and G6]. Further examples of the param-
eter planes averaged over all subjects are illustrated in supplementary
Fig. A.2 together with the distributions of the optimal model parame-
ters taking into account up to 5 largest similarity values per individual
parameter plane [Fig. 2A and D, white circles and blue diamonds].

The situation is different for the structure-function relationship,
where sFC is fitted to eSC (count matrix) [Fig. 2D-F] as illustrated in
Fig. 4. In particular, the maximal similarity monotonically decays in
a well-pronounced manner when the granularity of the Schaefer and
Shen atlases decreases for both models [Fig. 4A and E, blue and green
violins, supplementary Table A.1 ]. In contrast, Fit(sFC, eSC) increases
for larger threshold for HO96 atlas and the LC model [Fig. 4E and F,
yellow-red violins]. On the other hand, the behavior of the Fit-values is
non-monotonic for the phase model, where the thresholds of 25% and
35% are optimal for the structure-functional model fitting for HO96 at-
las and phase model [Fig. 4A and B]. The highest and the lowest corre-
spondence between the simulated and empirical data was obtained for
Shen79 and S600, respectively, for both models, see also supplementary
Fig. A.1 for effect size.

The distributions of the optimal model parameters for Fit(sFC, eSC)
also exhibit a deviation from those for Fit(sFC, eFC) as illustrated in
Fig. 4 (compare to Fig. 3). Interestingly, the best structure-functional
model fitting can be achieved for small and very well localized values
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Fig. 3. Results of the functional model fitting for (A - D) phase model (1) and (E - H) LC model (2). (A, E) Distributions of the maximal similarity values Fit(sFC,
eFC) as violin plots for the considered brain parcellations denoted on the horizontal axes as introduced in Methods, where the medians and the interquartile ranges
are also shown. (B, F) Outcomes of statistical tests, where the p-values (corrected for multiple comparisons) of the paired Wilcoxon signed-rank test of the Fit(sFC,
eFC) values between the parcellations indicated on the axes are depicted by color in logarithmic scale (see color bar). The null hypothesis is rejected with p < .05
(indicated by arrow on the color bar) in favor of the alternative hypothesis Fit™") > Fit™ for parcellations in the row and column, respectively, where the
corresponding cell is dark (small p-value) and contains the inequality sign “>”. (C,D,G,H) Distributions of the corresponding optimal model parameters, where the
one- and two-dimensional histograms of the occurrence frequency of the optimal parameters are, respectively, plotted as step-wise curves (C, G) and depicted in
color (D, H) ranging from white (small values) to black (large values) for the parcellations indicated in the legends and plots. (For interpretation of the references
to colour in this figure legend, the reader is referred to the web version of this article.)

of the global coupling C and for broadly distributed delay = [Fig. 4C
and D] when compared to the functional fitting modality. The latter
property is somewhat reduced for the LC model as compared to the
phase model [Fig. 4G and H]. Nevertheless, positive delay in coupling
is still important to obtain the best model fitting in this case for both
models, see supplementary Fig. A.2 for more details and comparison

between the phase and LC models.

3.2. Inter-parcellation variability of fitting results

To explore the variability of the fitting results over brain parcella-
tion, in this section we analyze the similarity among the goodness-of-
fit vectors Fit(,-) (3) collected for all subjects and fMRI scan sessions
(see Methods) calculated for different parcellations and models. The Fit-
values were correlated across subjects for any two parcellations for the
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Fig. 4. Results of the structure-functional model fitting for (A - D) phase model (1) and (E - H) LC model (2). (A, E) Distributions of the maximal similarity values
Fit(sFC, eSC) for the considered brain parcellations, where the medians and the interquartile ranges are also shown. (B, F) Outcomes of statistical tests, where the
corrected for multiple comparisons p-values of the paired Wilcoxon signed-rank test of the Fit(sFC, eSC) values between the parcellations indicated on the axes are
depicted by color in logarithmic scale (see color bar). The null hypothesis is rejected with p < .05 (indicated by arrow on the color bar) in favor of the alternative
hypothesis Fit™" > Fit'™ for parcellations in the row and column, respectively, where the corresponding cell is dark (small p-value) containing the inequality
sign “>”. (C,D,G,H) Distributions of the corresponding optimal model parameters, where the one- and two-dimensional histograms of the occurrence frequency are,
respectively, plotted as step-wise curves (C, G) and depicted in color (D, H) ranging from white (small values) to black (large values) for the parcellations indicated
in the legends and plots. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

same as well as different models to evaluate how strongly the variation
of the brain parcellation and model can affect the inter-subject patterns
of the goodness-of-fit and assess the reliability of the fitting results.
The pairwise correlations of the maximal similarity Fit(sFC, eFC) be-
tween any two of the considered brain parcellations are shown for the
phase model in Fig. 5A and LC model in Fig. 5B. We observe that the
fitting results are well correlated for parcellations within the same at-
las/parcellation family, i.e., among S100-S600 parcellations and within

HO96 and Shen atlases. The average intra-atlas correlations are 0.82 for
the phase model [Fig. 5A] and 0.86 for the LC model [Fig. 5B]. On the
other hand, the similarity of the model fitting patterns between different
atlases is reduced, which holds for both models, and the corresponding
average inter-atlas correlations are 0.59 and 0.71, for the phase and LC
models, respectively. The inter-subject patterns of the goodness-of-fit
Fit(sFC, eFC) are preserved for both dynamical models as illustrated in
Fig. 5C, where the phase model was used for parcellations on the vertical
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Fig. 5. Correspondence between the patterns of the inter-individual variation of the fitting results (Fit-values (3)) for the considered parcellations and models. The
vectors of the Fit-values collected over all subjects and scans (see Methods for details) were Pearson correlated with each other for any two parcellations (indicated
on the axes) for (A - C) Fit(sFC, eFC) and (D - F) Fit(sFC, eSC), and for (A, D) phase model and (B, E) LC model. In plots (C and F) the correspondence between
the phase model (parcellations on the vertical axes) and LC model (parcellations on the horizontal axes) is illustrated. The results are depicted by color, and their
magnitudes are indicated in the plots. The crossed out cells indicate that the corresponding correlation does not reach the statistical significance with p < .05. The
heavy red lines delineate the parcellations from the same atlas (parcellation family). (For interpretation of the references to colour in this figure legend, the reader

is referred to the web version of this article.)

axis, and the LC model was simulated for parcellations on the horizontal
axis. As for the inter-parcellation correspondence of the fitting results
for the same model [Fig. 5A and B], similar amount of stronger intra-
and weaker inter-atlas correlation is observed for the between-model
comparison [Fig. 5C].

The same conclusion can be drawn for the structure-functional model
fitting Fit(sFC, eSC) as illustrated in Fig. 5D for the phase model and in
Fig. 5E for the LC model. Here, the parcellations from the same atlas also
agree much better with each other than for the parcellations from dif-
ferent atlases. The results also demonstrate that Fit-values obtained for
HO96 parcellations and the LC model [Fig. 5E] are relatively dissimilar
to the other two atlases of brain parcellations. Furthermore, the similar-
ity Fit(sFC, eSC) seems to be sensitive to the model used for simulation
as illustrated in Fig. 5F. The fitting results of the LC model for S100-
S600 parcellations weakly correlate with those obtained for all other
parcellations for the phase model. For other atlases, the fitting results
of LC model are either practically independent of those obtained for the
phase model (for the Shen atlas), or even weakly anti-correlate with the
other model (for HO96 atlas) even for the same brain parcellation/atlas
[Fig. 5F].

Changing the brain parcellation can also influence the values of the
optimal parameters, where the maximal similarity (3) is achieved. The
pairwise parameter differences are illustrated in supplementary Fig. A.3
for the considered parcellations and models. Similar to the correlation
between the Fit-values [Fig. 5], the parcellations from the same atlas are
expected to lead to smaller variations of the optimal parameters than
between those from different atlases. Interestingly, the variation of the
optimal parameters is larger for the functional model fitting modality,
especially, for the between-model comparison than for the structure-
function correspondence. In the latter case the parameter distance be-
tween models remarkably mimics the similarity patterns of the corre-
lation between fitting results, compare Fig. 5F and supplementary Fig.
A.3F.

3.3. Data variables

In the next Section 3.4 we evaluate how the maximal model-data
similarity (3) obtained for the optimal model parameters depends on
selected statistical properties of the empirical data used for the model
derivation and validation. To this end, we calculated several data vari-
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Fig. 6. Variation of the data variables extracted for the considered brain parcellations. In columns 1 and 2, the distributions of the data variables (indicated on the
vertical axes) for all subjects/fMRI sessions are depicted versus the parcellations (indicated on the horizontal axes). In column 3, the correspondence between the data
variables among all considered parcellations is illustrated. For any two parcellations (indicated on the axes), the Pearson cross-correlation between the corresponding
data variables was calculated across all subjects for (A3) aver[std(BOLD)], (B3) std[aver(eFC)], (C3) corr(eFC,eSC), and (D3) aver[std(eSC)] as indicated in the titles
of the plots. The results are depicted by color, and their magnitudes are also printed in the plots. The crossed out cells indicate that the corresponding correlation
does not reach the statistical significance with p < .05. The heavy red lines delineate the parcellations from the same atlas (parcellation family). (For interpretation
of the references to colour in this figure legend, the reader is referred to the web version of this article.)

ables (or indices) for each subject and fMRI scan session. For the em-
pirical BOLD signals we calculated the standard deviation of their time
fluctuations std(BOLD) averaged over all parcels aver[std(BOLD)]. Since
the BOLD signals were extracted as mean signals averaged over all
voxels in the parcels, the latter data variable may reflect the extent
of synchronization of BOLD dynamics within the individual brain re-
gions. Indeed, the amplitude of the mean signal is expected to increase
with enhanced synchronization as the theory of synchronization implies
(Kuramoto, 1984). On the other hand, calculating the variability of time
fluctuations among parcels std[std(BOLD)] may give an insight into the
difference of individual parcels in this respect.

Smaller brain regions, e.g., for finer granularity (Schaefer, Shen) or
larger probability threshold (HO96) can be suspected to be more homo-
geneous with respect to the BOLD dynamics. We observed that mean
BOLD signals exhibit enhanced fluctuations for smaller parcels demon-
strating larger standard deviation std(BOLD) [Fig. 6A1], where the dis-
tributions of aver[std(BOLD)] exhibit the behavior inverse to that of the
parcels’ size versus the considered brain parcellations [Fig. 1A]. The
same holds for std[std(BOLD)] [Fig. 6A2, but see Shen232]. Our calcu-
lations thus indicate that the intra-region dynamical homogeneity (syn-
chronization) may increase together with the inter-region variability of
it. However, a systematic investigation of the collective dynamics of
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BOLD signals within parcels is necessary to assess the intra-region dy-
namical homogeneity (Schaefer et al., 2018). Interestingly, the distri-
butions of both mentioned data variables across individual subjects ex-
hibit very similar patterns for any of the considered atlases and strongly
correlate across subjects for any pair of parcellations, see Fig. 6 A3 for
aver[std(BOLD)], where the minimal correlation r ~ 0.96 is attained for
S$600.

Additional data variables can be calculated from eFC by evaluation
of its column-wise mean aver(eFC) and the standard deviation std(eFC),
where the former represents the average functional connectivity (syn-
chronization) of a region to the rest of the brain (i.e., other regions),
and the latter stands for the extent of variation of the individual con-
nections of a given brain region. Evaluating the mean and the standard
deviation once more across all brain regions we obtain four data vari-
ables: aver[aver(eFC)), std[aver(eFC)], aver[std(eFC)], and std[std(eFC)].
The distributions of the first two are illustrated in Fig. 6B1 and B2,
where the total average inter-region synchronization aver[aver(eFC)] in
the brain decays with decreasing region size, which is also in agree-
ment with the behavior observed for BOLD signals [Fig. 6A2]. The inter-
region variation of the regional synchronization to the rest of the brain
std[aver(eFC)] does not demonstrate very pronounced dynamics with
respect to the considered parcellations [Fig. 6B2]. However, the inter-
parcellation patterns of its distribution appears to be similar to those
observed for the functional similarity Fit(sFC, eFC) [Fig. 3A and E]. An
example of the cross-parcellation correlation for the later data variable
is illustrated in Fig. 6B3, where the level of correlation is still very high
with r > 0.91 except for S100 which distinguishes from the other parcel-
lations.

Further data variables can be the extent of correlation between the
empirical connectivity matrices eFC, eSC and ePL, which may influ-
ence the quality of the model fitting and are denoted as corr(eFC, eSC),
corr(eFC, ePL) and corr(eSC, ePL). Examples of the distributions of these
variables are shown in Fig. 6C1 and C2, where both illustrated variables
apparently demonstrate a monotonic behavior with respect to the par-
cel size, but in opposite directions, i.e., corr(eFC,eSC) decreases, and
corr(eFC, ePL) increases when the region size decays. The impact of the
state-of-the-art brain parcellations on the structure-function relationship
corr(eFC,eSC) was investigated by Messe (2019), and a similar global
decrease in correlation with decreasing the parcellation granularity and
regions size was reported. For these data variables the difference be-
tween the atlases becomes more pronounced, where the correspondence
(correlation) between the data indices for the parcellations of the same
atlas are stronger than for those from different atlases [Fig. 6C3] as was
shown for the results of the model validation and optimal parameters
[Fig. 5 and supplementary Fig. A.3].

This effect is further enhanced for the data variables derived from
SC matrices, for example, for aver[std(eSC)] [Fig. 6D3]. The data vari-
ables aver|[std(eSC)] and aver[std(ePL)] calculated from the eSC and ePL
matrices normalized by their mean as used in the models always attain
larger values for finer granularity/smaller brain regions [Fig. 6D1 and
D2]. This is similar to the variables corr(eFC,ePL) [Fig. 6C2] and those
derived from BOLD signals [Fig. 6A1 and A2]. This is however in con-
trast to the data variables calculated from eFC, where the behavior is
different [Fig. 6B1, B2 and C1]. The observed increase of the average
inter-region variability of SC matrices [Fig. 6D1 and D2] might be sus-
pected when the brain is parcellated into smaller regions that stronger
deviate from each other with respect to individual connectivity prop-
erties. However, a detailed investigation is necessary to clarify the un-
derlying mechanisms of the illustrated behavior of the considered data
variables [Fig. 6].

Further considered data variables in the form std[aver(-)] and
std[std(-)] were calculated from the eSC and ePL matrices. The natural
frequencies f; of the models (1) and (2) extracted from the frequency
spectra of the empirical BOLD signals (see Methods) were also taken
into account, and the mean aver(f;) and the standard deviation std(f;)
were involved in the analysis.
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3.4. Correlation between data variables and model fitting

The variation of the empirical data illustrated in Fig. 6 may influence
the observed variability of the modeling results [Figs. 3 and 4]. There-
fore, to inquire into where the variance of the fitting results across sub-
jects and parcellations may come from, we investigate how the discussed
data variables and the maximal similarity (3) correlate with each other.
Several such correlative relationships are illustrated in the scatter plots
in Fig. 7A-C, where, together with linear regressions for individual par-
cellations (color dots and dashed lines), the joint linear regression for
all data points in the plots (for all 11 parcellations) is also shown by
solid black lines. The observed distinct constellations between the in-
dividual (color dashed) and joint (black solid) regression lines can be
used to differentiate between a few classes of the data variables with
respect to their relationships to the overall model fitting. For example,
for the data variable aver[std(BOLD)] [Fig. 7A] we found that the joint
correlation indicated in the plot appears to be much smaller than the
correlative relationships obtained separately for each individual par-
cellation. Therefore, the variation of the mentioned data variable can
relatively well account for the variability of the model fitting across in-
dividual subjects for a given parcellation, i.e., for the intra-parcellation
inter-subject variance. However, its explanatory power for the variation
of Fit(sFC, eFC) across considered parcellations is limited. We may thus
refer to such data indices as intra-parcellation variables.

Another class of the data variables can be illustrated by the data in-
dex corr(eFC, eSC) [Fig. 7B]. Here, the joint correlation between the em-
pirical data and the model goodness-of-fit across subject data from dif-
ferent parcellations can be much higher than the correspondence across
subjects within individual parcellations. In the considered example, the
across-subject correlations between the empirical data and results of
the model fitting are mostly small and negative for individual parcel-
lations. Therefore this data variable can hardly explain the variance of
the model fitting across subjects for a given brain parcellation. Never-
theless, the joint correlation for the data merged over all parcellations is
much stronger contributing to our understanding of the variance of the
fitting results across different parcellations. We may thus refer to such
data indices as inter-parcellation variables.

For some other data variables, for example, for std[aver(eFC)] the
joint correlation is comparable to the relatively large correlations for
individual parcellations [Fig. 7C]. The explanatory power of such vari-
ables can thus be extended from single to many parcellations. This in-
dicates that such data variables can therefore well account for both the
variability of the model fitting across subjects within individual parcel-
lations and the differences of Fit-values across parcellations. We may
thus refer to such data indices as the variables of both intra- and inter-
parcellation types.

The correlations across subjects and scanning sessions between the
similarity Fit(sFC, eFC) and all mentioned data variables are shown in
Fig. 7D for all considered parcellations. One in particular observes that
there are several data variables that only weakly correlate with Fit(sFC,
eFC), which may indicate that the results of the model fitting may little
depend on them. Such conclusion could be made for the mean of the
natural frequencies aver(f;), average variability of eFC aver[std(eFC)]
(except for S100 and S200), and also for the data indices derived from
eSC and ePL. Notably, the extent of the empirical structure-function re-
lationship corr(eFC,eSC) also little correlates with the correspondence
between simulated and empirical functional data, see also Fig. 7B. Put
otherwise, increasing/decreasing the agreement between the empirical
structure (eSC) and function (eFC) seems not to essentially influence the
quality of the model fitting (the similarity between sFC and eFC) or may
even have a negative effect. This takes place in spite of that the network
model is constructed from eSC and its output is compared with eFC.

Other data variables consistently exhibit (anti-)correlation with
Fit(sFC, eFC) ranging from moderate to relatively strong for most of
the parcellations. This for instance applies to the spread of the natural
frequencies std(f;), amplitude aver[std(BOLD)] of the BOLD signals and
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Fig. 7. Relationship between the fitting results (3) of the phase model (1) and empirical data. (A-C) Scatter plots and the corresponding linear regression (straight
lines) are shown for a few selected data variables from Fig. 6 indicated on the vertical axes versus the maximal similarity Fit(sFC, eFC) (horizontal axes). Each dot
represents one subject/MRI session, and color corresponds to that used to differentiate between the parcellations in Fig. 6. The black solid lines depict the joint
linear regressions for all data in the plots, and the joint correlations r are also indicated. (D, E) Pearson correlation across individual subjects between the maximal
similarity Fit(sFC, eFC) and several data variables indicated on the horizontal axis. The correlation was calculated for (D) different individual parcellations indicated
on the vertical axis and (E) joint data merged over a few combinations of the considered parcellations as indicated on the vertical axis: all parcellations of the Schaefer
atlas, Harvard-Oxford atlas, Shen atlas and all 11 considered parcellations (last row). The correlation is depicted by color, and its magnitude is indicated in the plot.
The crossed out cells indicate that the corresponding correlation does not reach the statistical significance with p < .05.

some properties of eFC [Fig. 7D]. These data variables may be used to
provide an initial guess of the pattern of the functional model fitting for
new subjects that supposed to be included in the analysis. However, the
correlation between eFC and ePL matrices corr(eFC, ePL) seems to have
a different impact on the model validation for different atlases, where
Fit(sFC, eFC) is practically independent of this data index for the Schae-
fer atlas, which is distinct for other atlases [Fig. 7D]. Such effects may
also be useful for understanding the observed differences in the qual-
ity of the model fitting for individual subjects and may also be applied
for explaining the impact of the considered brain parcellations on the
model fitting [Fig. 3A].

The above classification of the data variables with respect to their
intra- or inter-parcellation correlative relationships with the modeling
results [Fig. 7A-C] can be evaluated by comparing the individual corre-
lations in Fig. 7D to the joint correlation calculated for the data merged
over the considered parcellations for simultaneous analysis. This is illus-
trated in Fig. 7E for the phase model and functional model fitting. More
systematic comparison of the individual and joint correlations between
the results of the model fitting (3) and the data variables is summarized
in Fig. 8 for both models (1) and (2) and both fitting modalities Fit(sFC,
eFC) and Fit(sFC, eSC). Much larger individual (joint) correlation than
the joint (individual) one is indicative for an intra- (inter-) parcellation
data variable.

The constellation obtained for the phase model [Fig. 8A] is well pre-
served also for the LC model [Fig. 8B, see also supplementary Fig. A.4 for
individual and joint correlations]. The correlation patterns are different
for the structure-functional fitting modality [Fig. 8C and D], where the
results obtained for the phase and LC models may deviate from each
other, see also supplementary Fig. A.5 for individual and joint corre-
lations for the structure-functional fitting modality Fit(sFC, eSC). Al-
though most of the considered data indices exhibiting large correlation
are of inter-parcellation type [Fig. 8], still there are a few data variables
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of intra-parcellation type like std(f;), aver[std(BOLD)] or std[std(eFC)]
for the functional similarity Fit(sFC, eFC) or std(f;) (phase model) and
aver(f;) (LC model) for Fit(sFC, eSC). The most pronounced data vari-
ables of both types for Fit(sFC, eFC) are given by the total average inter-
region synchronization aver[aver(eFC)] or inter-region variation of the
regional synchronization std[aver(eFC)] [Fig. 8A,B].

3.5. Multiple linear regression model

The variation of the model fitting across subjects and brain parcella-
tions can be investigated by combining several data variables in a MLR
model, where they serve as independent (explanatory) variables, and
the maximal similarity Fit(sFC, eFC) is the MLR output, i.e., the depen-
dent variable. The calculated data variables can be used in the MLR
model to evaluate which variation of the Fit-values across subjects and
parcellations can be explained by the individual empirical data used for
the model derivation and validation. The results of such a regression
with respect to all data variables [Fig. 7] are illustrated in Fig. 9 for in-
vestigated individual parcellations as well as for the joint data merged
over all parcellations. The fraction of the explained variance increases
when more data variables get involved in the regression, see Fig. 9A-
C and compare the indicated R?-values to the correlation coefficients
in Figs. 7 and 8. The results of the model fitting for the anatomical
Harvard-Oxford and the functional Shen atlases seem to be somewhat
better explained by the empirical data used for the model derivation
than for the functional Schaefer atlas [Fig. 9E, but see Shen232 for LC
model]. The strongest regression results are obtained for the joint re-
gression for the data merged over all considered parcellations [Fig. 9D
and E].

The weights of the discussed data variables within the maximal sim-
ilarity Fit(sFC, eFC) as reflected by the regression coefficients [Fig. 9
A2-D2] highlight several data variables that are of importance for under-
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Fig. 8. Correlation between the Fit-values (3) and data variables from Fig. 7 jointly for all considered brain parcellations. For the data variables indicated on the
horizontal axes, the joint correlation for the data merged over all considered parcellations [Fig. 7E, last row] is depicted by empty bars. The hatched bars represent
the correlation for individual parcellations from Fig. 7D averaged over all parcellations and significant values (i.e., excluding the crossed out cells in Fig. 7D) as
indicated in the legends. The data is shown for (A, B) functional fitting Fit(sFC, eFC) and (C, D) structure-functional fitting Fit(sFC, eSC), and for (A, C) phase model

(1) and (B, D) LC model (2) as indicated in the titles of the plots.

standing of the modeling results. All regression coefficients for the inter-
dependency between Fit(sFC, eFC) and the data variables are shown in
Fig. 10 for both models including the case of joint data (last rows in the
plots). Comparing the obtained results for individual parcellations and
models, we observe that the regression coefficients well agree between
the two models. There are several data indices that consistently and
strongly contribute to the Fit-values and seem to have a major impact on
the model fitting for many parcellations, see Figs. 9 and 10. In particular,
the variables std[aver(eFC)], aver[std(eFC)] and corr(eFC, eSC) have the
most notable regression coefficients. At the level of individual parcella-
tions, there is also a minor impact of other variables, for example, the
natural frequencies std(f;), average total connectivity aver[aver(eFC)]
and its variability std[std(eFC)] as well as structure-function relation-
ship with ePL matrix corr(eFC, ePL). For the inter-parcellation variance
of Fit(sFC, eFC), additional variables can be taken into account, that
are corr(eFC,ePL) and aver[std(eSC)] as suggested by the MLR model
[Fig. 10].

Similar results can also be obtained for the structure-functional
model fitting and the maximal similarity Fit(sFC, eSC) [supplementary
Fig. A.6]. Here we however find that Fit(sFC, eSC) less consistently de-
pends on the data variables over individual parcellations and with a
reduced agreement between different models as reflected by the MLR
coefficients. The only data indices that reliably contribute to the inter-
individual variation of the Fit-values for most of the parcellations are
those extracted from the natural frequencies aver(f;) and std(f;), while
the latter is again less reliable for the LC model [supplementary Fig.
A.6 A and B]. The fractions of the Fit(sFC, eSC) variance explained by
the data variables for individual parcellations is reduced as compared
to the functional model fitting [compare Fig. 9E and supplementary Fig.
A.6 D]. However, the inter-parcellation variance as reflected by the joint
data can still be relatively well accounted for by the empirical data [sup-
plementary Fig. A.6 C], and the largest MLR coefficients of the joint data
for both models are obtained for the structural connectome eSC and ePL
[supplementary Fig. A.6 A and B].
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3.6. Group-level inter-parcellation variations

In the previous sections the interdependence between the results of
the model validation and empirical data were evaluated by correlation
of the Fit-values with the data variables across individual subjects ei-
ther for any parcellation separately or for joint data merged over all
considered parcellations. While the former approach investigates the
inter-subject intra-parcellation variance, the latter also considers the
variation of the variables among parcellations. The inter-parcellation
variation of the fitting results can also be addressed at the group level
only, i.e, separated from the inter-subject variations. This can be accom-
plished when the data calculated for individual subjects is compressed
into single values, for example, to medians, see Figs. 3 and 4. The be-
havior of the group-averaged values across individual parcellations can
provide an informed expectation on how a given parcellation may in
average influence the considered variables, for example, the Fit-values
or the data indices.

In this section we correlate the medians of the Fit-values and the
considered data variables across parcellations. The results of the calcu-
lations are illustrated in Fig. 11. Several data variables exhibit strong
correspondence with the Fit-values for both models. However, only a
few of them are significantly correlated as indicated by hatched bars for
the phase model and empty bars with heavy borders for the LC model
[Fig. 11A and D]. For the functional modal fitting, only two data indices
std[aver(eFC)] and corr(eFC, eSC) significantly and strongly contribute
to the inter-parcellation variance of Fit(sFC, eFC) at the group level for
both models [Fig. 11A], see also Fig. 11B and C for the corresponding
scatter plots, where the fraction of the explained variance can reach 93%.

For the structure-functional model fitting, more data variables signif-
icantly correlate with the maximal similarity Fit(sFC, eSC) [Fig. 11D].
However, only four of them fulfill this requirement for both models si-
multaneously: corr(eFC,eSC) that also contributes to Fit(sFC, eFC), as
well as data variables aver[std(eSC)], std[aver(ePL)] and aver[std(ePL)]
calculated from the structural connectome as given by eSC and ePL ma-
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Fig. 9. Modeling the maximal similarity Fit(sFC, eFC) by the multiple linear regression (MLR) model with data variables from Fig. 7 as independent variables. (A1l
- D1) Scatter plots with regression lines of the Fit-values predicted by MLR versus Fit(sFC, eFC) obtained by simulations of the phase model (1). The diagonals are
depicted by thin black lines for comparison. (A2 - D2) The corresponding regression coefficients with the standard deviation for z-scored data obtained from the
model fitting for parcellations (A) S200 and (B) HO96 0%, (C) Shen79 and (D) for joint data merged over all considered parcellations as indicated in the corresponding
scatter plots. The gray bars indicate the regression coefficients, where the statistical significance with p < .05 was not achieved. The fractions of the explained variance
R? are also shown in the scatter plots and in plot (E) for all individual parcellations for both phase and LC models as indicated in the legend. The dashed lines depict

R? for the joint data also indicated in the legend.

trices. Again, the fraction of the explained variance can reach 93% for
the data index calculated from eSC, see Fig. 11D-F also for the corre-
sponding scatter plots. Interestingly, for the structure-functional fitting
modality also the data indices derived from eFC matrices seem to signif-
icantly contribute to the fitting values Fit(sFC, eSC) for the phase model
[Fig. 11D], although the corresponding p-values are close to the signif-
icance threshold of 0.05 after correction for multiple comparisons.

4. Discussion

We investigated the impact of data parameters used for the pre-
processing of the empirical neuroimaging data on the structure and dy-
namics of whole-brain dynamical models derived from and validated
against empirical data. In this study we focused on brain parcellations
and considered three brain atlases as defined by the functional Schaefer
atlas with 100, 200, 400 and 600 cortical regions (Schaefer et al., 2018),
functional Shen atlas with 79, 156 and 232 cortical regions (Shen et al.,
2013), and the anatomical Harvard-Oxford atlas of 96 cortical regions
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with a few thresholds of the maximal probability (Desikan et al., 2006)
that also influenced the region size. Here we did not aim to suggest
an optimal atlas, which is a complex task given the numerous existing
parcellation approaches, brain atlases and multiplicity of possible opti-
mization criteria. Instead, we illustrated possible effects that the consid-
ered brain parcellations can have on the modeling results. For this we
analyzed the results of the model validation for two fitting modalities
as given by the maximal similarities Fit(sFC, eFC) and Fit(sFC, eSC) and
for two models of coupled phase and limit-cycle oscillators. We also sug-
gested an approach to account for the parcellation-induced inter-subject
and inter-parcellation variability of the fitting results.

We compared the distributions of the Fit-values and the correspond-
ing optimal parameters for individual subjects and reported on pro-
nounced differences in the model fitting between the considered brain
parcellations. In particular, Fit(sFC, eFC) for the Schaefer atlas is much
smaller than that for the Harvard-Oxford and Shen atlases [Fig. 3]. The
latter atlases seem to provide appropriate parcellations for high corre-
spondence between simulated and empirical functional data. The better
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Fig. 10. Regression coefficients of the MLR model for Fit(sFC, eFC), for all considered parcellations including the joint data as indicated on the vertical axes and for
(A) phase model and (B) LC model. The values are depicted by color, and they magnitudes are shown in the plots. The crossed out cells indicate that the corresponding

coefficient does not reach the statistical significance with p < .05.

fitting for HO96 0% as compared to S100 was also observed for the
model of coupled phase oscillators simulating the high-frequency elec-
trical activity of brain regions in « and y frequency bands (Manos et al.,
2019). For the structure-functional model fitting Fit(sFC, eSC) the sit-
uation is different, and the difference between the atlases is less pro-
nounced [Fig. 4].

We demonstrated that the best correspondence Fit(sFC,eFC) between
simulated and empirical FCs was achieved at 200 parcels for the Schae-
fer atlas [Fig. 3] suggesting that an optimal spatial scale may exist, see
also (Arslan et al., 2018; Proix et al., 2016). However, the best func-
tional model fitting for the other brain atlases was achieved at the coars-
est granularity (Shen atlas) or smallest probability threshold (Harvard-
Oxford atlas), where the parcel size is maximal. On the other hand, the
maximal values of the structure-functional model fitting Fit(sFC, eSC)
were achieved at the largest region size for the Schaefer and Shen at-
lases [Fig. 4]. For the Harvard-Oxford atlas, Fit(sFC, eSC) exhibited ei-
ther non-monotonic behavior with the optimal probability thresholds at
25%-35% for the phase model or even monotonically increased for the
LC model when the region size decreased. We thus observed a remark-
able exchange of the distribution patterns of Fit(sFC, eFC) and Fit(sFC,
eSC) between the Schaefer and Harvard-Oxford atlases and different be-
havior of the Fit-values with respect to the parcel size. These findings
complicate the problem of the optimal spatial scale of brain parcellation.
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The corresponding distributions of the optimal model parameters
however manifest very similar shapes for the same fitting modality
also for different atlases and parcellations, but differ across fitting
modalities [Figs. 3 and 4]. In particular, the optimal parameters for
Fit(sFC, eFC) are strongly concentrated towards zero delay, whereas the
structure-function correspondence Fit(sFC, eSC) for many subjects was
also achieved for large delay, especially, for the phase model. This is
accompanied by a narrow interval of the coupling strength in the latter
case, whereas this parameter can broadly be distributed for the func-
tional fitting, especially, for the Shen atlas and phase model. Therefore,
the direct modeling of the resting-state BOLD dynamics by slowly os-
cillating phase or limit-cycle oscillators can safely be performed by sys-
tems without delay (Deco et al., 2019; 2017; Ponce-Alvarez et al., 2015),
however, only for the fitting of the simulated and empirical functional
data.

The impact of the brain parcellations on the model validation can
be investigated by evaluation of how the fitting results Fit(-,-) calcu-
lated for individual subjects and a given parcellation agree with those
found for other parcellations. We thus correlated Fit-values for different
parcellations across subjects and calculated the distance between the
corresponding optimal model parameters. It appeared that Fit-values
for the parcellations within the same atlas better correlate with each
other than across different atlases for both fitting modalities Fit(sFC,
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Fig. 11. Correlation between the results of the model fitting and data variables at the group level. (A, D) Pearson correlation across pacellations between the medians
evaluated over all subjects of the data variables and the corresponding medians of (A) Fit(sFC, eFC) and (D) Fit(sFC, eSC). The hatched bars for the phase model and
empty violet bars with heavy borders for the LC model stand for statistically significant (p < .05) correlation coefficients. (B,C,E,F) Scatter plots of the medians of
the data variables versus (B, C) Fit(sFC, eFC) and (E, F) Fit(sFC, eSC) with the corresponding regression lines. Each plot symbol corresponds to one of the considered
parcellations. The fractions of the explained variance (squared correlation) for both models are indicated in the legends.

eFC) and Fit(sFC, eSC) and both considered models [Fig. 5]. The same
is true for the distance between the optimal parameters, where they less
deviate from each other for the parcellations from the same atlas than
between atlases [supplementary Fig. A.3]. It is interesting to note that
neither different numbers of brain regions for the Schaefer and Shen
atlases nor different level of thresholding for the Harvard-Oxford atlas
can cause differences in the cross-subject correspondence in the model
fitting larger than those between different atlases even for parcellations
with similar region size. The inter-atlas differences cannot simply be re-
duced to differentiation between anatomical and functional parcellation
approaches considered in this study. This indicates that a parcellation
family (atlas) shares some particular properties that are reflected in the
results of the model fitting and preserved even for varying other “inter-
nal” parcellation parameters (e.g., granularity or probability threshold
affecting region size). This conclusion is also preserved for between-
model comparison for Fit(sFC, eFC), whereas the structure-functional
fitting results Fit(sFC, eSC) obtained for the LC model demonstrated en-
hanced sensitivity, especially, for the Harvard-Oxford atlas [Fig. 5].

To understand the origin of the observed variation of the fitting re-
sults across subjects and brain parcellations, we suggested to evaluate
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how the Fit-values depend on a few data variables (or data indices) re-
flecting some statistical properties of the empirical data used for the
model derivation and validation. The performed regressive analysis be-
tween Fit-values and data variables suggested that the latter can be split
into a few classes depending on their explanatory power for (i) inter-
subject Fit-variance for individual parcellations; (ii) inter-subject Fit-
variance across parcellations for joint data; and (iii) both inter-subject
Fit-variance within individual parcellations and across them [Figs. 7
and 8].

The bivariate analysis provided correlation between Fit-values and
individual data variables, where the squared correlation with Fit(sFC,
eFC) across subjects can reach R? = 64% for individual parcellations
and 35% for joint data merged over all considered parcellations [Fig. 7
and supplementary Fig. A.4]. For the structure-functional model fitting
Fit(sFC, eSC), this quantity may range up to 40% for the variance across
subjects for individual parcellations and about 62% for joint data [sup-
plementary Fig. A.5]. The inter-subject fluctuations of the Fit-values
may be better accounted for if several data variables are used in the
MLR model [Fig. 9]. With the multivariate approach, the inter-subject
variance of Fit(sFC, eFC) and Fit(sFC, eSC) can be explained up to 77%



O.V. Popovych, K. Jung, T. Manos et al.

and 56% within individual parcellations and up to 76% and 77% for joint
data, respectively [Fig. 9 and supplementary Fig. A.6]. Finally, if the
variance of the fitting results across parcellations is considered at the
group level only (as medians), the individual data variables correlate
with the fitting values up to R* = 93% [Fig. 11].

Evaluating the effect that a given parcellation can have on the data
variables, which reliably, strongly and significantly correlate with the
fitting values as investigated in this study, can help to explain and pre-
dict the results of the model fitting before involving computationally
expensive model simulations. This can be addressed by investigating
the properties of the empirical data extracted for varying brain par-
cellation. Decrease of the region size due to finer granularity or larger
cutting threshold seems to cause two main effects, where both (i) the
intra-region dynamical homogeneity and (ii) inter-region heterogeneity
appeared to increase. This can be concluded from the behavior of the
mean BOLD signals of the brain regions and the extent of total synchro-
nization between regions aver[aver(eFC)] [Fig. 6]. The inter-region het-
erogeneity seems to increase for smaller regions also for the structural
connectome as demonstrated by the data variables derived from eSC,
ePL. Here, the empirical structure-function relationship corr(eFC, eSC)
decays with decreasing region size as was also reported by Messe (2019).
It is interesting to note that the correspondence between structure and
function is larger for the Harvard-Oxford atlas and the coarsest granu-
larity of the Shen atlas as compared to the Schaefer atlas. Investigation
of the impact of brain parcellations on the data variables should also
take into account inter-subject spatial variability (shape and location)
of brain regions, which seems to influence the cross-subject variability
of the resting-state fMRI data and functional connectivity (Bijsterbosch
et al., 2018; Kong et al., 2018).

Among the considered data variables only a few indeed exhibit
relatively strong interdependencies with the Fit-values across subjects
and parcellations [Figs. 7-11]. These sets of the data variables may
vary for different fitting modalities and models. Here, the behavior of
corr(eFC,eSC) is of special interest, because the empirical structure-
function correspondence might be suspected to underlie the model fit-
ting results Fit(sFC, eFC) and Fit(sFC, eSC). Our investigations how-
ever showed that corr(eFC,eSC) only weakly anti-correlate with Fit-
values across subjects for practically all of the considered parcella-
tions [Fig. 7 and supplementary Figs. A.4 and A.5]. On the other hand,
corr(eFC, eSC) relatively strongly correlates with the Fit-values for joint
data [Fig. 8] and can thus potentially be used to explain the varia-
tion of the fitting results between atlases, especially, if the prediction
is performed at the group-averaged level [Fig. 11]. In addition to the
variable of the structure-function relationship, the attention might also
be paid to other data indices including the average BOLD amplitude
aver[std(BOLD)], the total synchronization aver[aver(eFC)], variability
of the regional synchronization std[aver(eFC)] and the average variabil-
ity of inter-region structural connectivity aver[std(eSC)]. Further data in-
dices derived from the path length matrices ePL and natural frequencies
f; might also be of importance, especially, for the structure-functional
model fitting Fit(sFC, eSC).

Examining the similarities and differences in the interdependencies
between the Fit-values and data variables for individual parcellations,
joint and group-averaged data we may reveal the properties that are cru-
cial for understanding the impact of brain parcellations on the empirical
and simulated data. In this study we presented several interesting ob-
servations that require further detailed investigation and explanation,
which could contribute to the mechanisms influencing the modeling re-
sults. In the first turn, this concerns the counter-intuitive negative de-
pendencies (or their absence) between the empirical structure-function
relationship and fitting results at the subject level in contrast to the
group level as discussed above. Understanding the relationship between
the fitting results and other data variables, especially, for different fit-
ting modalities is also important. In this respect, we observed that the
parcellation-induced variability of the structure-functional model fitting
across subjects appears to be sensitive to the model and parcellation

16

Neurolmage 236 (2021) 118201

considered, whereas the functional fitting is relatively robust against
different parcellations and models [Fig. 5]. Another issue relates with
the mechanism of how the parcellation granularity and region size in-
fluence the correspondence between empirical and simulated functional
and structural connectomes, which was found to be a difficult problem
already for empirical data (Messe, 2019). We suggested to address these
questions by separating the inter-subject and inter-parcellation variabil-
ity of the modeling results and their investigation by inspecting the data
indices computed from the empirical data. This approach needs to be
confirmed and refined for more parcellations, models and datasets.

In this study we used the HCP dataset, where the data quality is close
to a perfect physiological noise reduction. Examining different process-
ing strategies and their parameters can be an object of investigation for
further studies. In addition, other measures of similarity between sim-
ulated and empirical data can be used to verify the obtained results,
for example, the amount of metastability or similarity between simu-
lated and empirical dynamic FC (Deco et al., 2017). The generalization
of the reported results should be based on profound hypothesis testing
involving sophisticated statistical methods for evaluation and compar-
ison of correlation (Wilcox and Rousselet, 2018). On the other hand,
instead of similarity measures based on correlative relationships one
may utilize linear models that could resolve some issues connected with
heteroscedasticity of the data (Thirion et al., 2015). Some other data
indices may be calculated from empirical data. For example, the graph-
theoretical network properties of the empirical connectome may be in-
volved in the analysis as well (Rubinov and Sporns, 2010). Selecting and
investigating a few most important data variables with respect to their
impact on the modeling results, and on a data-driven analysis of brain
networks, could advance our understanding of the results’ variability
across subjects and parcellations.
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