000892827 001__ 892827
000892827 005__ 20210623133426.0
000892827 0247_ $$2doi$$a10.1038/s42005-021-00601-8
000892827 0247_ $$2Handle$$a2128/27854
000892827 0247_ $$2altmetric$$aaltmetric:106283916
000892827 0247_ $$2WOS$$aWOS:000657764200002
000892827 037__ $$aFZJ-2021-02370
000892827 082__ $$a530
000892827 1001_ $$0P:(DE-Juel1)185853$$aWang, Yuqi$$b0$$ufzj
000892827 245__ $$aSymmetry mediated tunable molecular magnetism on a 2D material
000892827 260__ $$aLondon$$bSpringer Nature$$c2021
000892827 3367_ $$2DRIVER$$aarticle
000892827 3367_ $$2DataCite$$aOutput Types/Journal article
000892827 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1622042323_1384
000892827 3367_ $$2BibTeX$$aARTICLE
000892827 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000892827 3367_ $$00$$2EndNote$$aJournal Article
000892827 520__ $$aSymmetries in nanoscale structures can be decisive for their structural, electronic, and magnetic properties, particularly in systems with reduced dimensions. Here we show that the symmetries of a flat metal-organic molecule adsorbed on a transition metal dichalcogenide, a 2-dimensional layered material, have a dramatic effect on the total spin and the intramolecular spin-spin interactions. Using a scanning probe microscope, we find two different molecular spin states by modifying the symmetry of the molecules via the twist angle to the substrate. Additionally, we observe significant non-collinear Dzyaloshinskii–Moriya interaction between two electron spins on the molecule induced by the spin-orbit coupling of the van der Waals coupled layered material with broken inversion symmetry. Our work opens a path for modifying the spin by exploiting symmetries and for studying the nature of surface-induced non-collinear spin-spin interaction within a single molecule which might allow the realization of more complex topological spin structures.
000892827 536__ $$0G:(DE-HGF)POF4-521$$a521 - Quantum Materials (POF4-521)$$cPOF4-521$$fPOF IV$$x0
000892827 588__ $$aDataset connected to CrossRef, Journals: juser.fz-juelich.de
000892827 7001_ $$0P:(DE-Juel1)181014$$aArabi, Soroush$$b1$$ufzj
000892827 7001_ $$0P:(DE-HGF)0$$aKern, Klaus$$b2
000892827 7001_ $$0P:(DE-Juel1)174438$$aTernes, Markus$$b3$$eCorresponding author
000892827 773__ $$0PERI:(DE-600)2921913-9$$a10.1038/s42005-021-00601-8$$gVol. 4, no. 1, p. 103$$n1$$p103$$tCommunications Physics$$v4$$x2399-3650$$y2021
000892827 8564_ $$uhttps://juser.fz-juelich.de/record/892827/files/s42005-021-00601-8.pdf$$yOpenAccess
000892827 909CO $$ooai:juser.fz-juelich.de:892827$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000892827 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)185853$$aForschungszentrum Jülich$$b0$$kFZJ
000892827 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)181014$$aForschungszentrum Jülich$$b1$$kFZJ
000892827 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)174438$$aForschungszentrum Jülich$$b3$$kFZJ
000892827 9130_ $$0G:(DE-HGF)POF3-141$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Electron Charge-Based Phenomena$$x0
000892827 9131_ $$0G:(DE-HGF)POF4-521$$1G:(DE-HGF)POF4-520$$2G:(DE-HGF)POF4-500$$3G:(DE-HGF)POF4$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lNatural, Artificial and Cognitive Information Processing$$vQuantum Materials$$x0
000892827 9141_ $$y2021
000892827 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS$$d2021-02-04
000892827 915__ $$0StatID:(DE-HGF)0160$$2StatID$$aDBCoverage$$bEssential Science Indicators$$d2021-02-04
000892827 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000892827 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bCOMMUN PHYS-UK : 2019$$d2021-02-04
000892827 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal$$d2021-02-04
000892827 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ$$d2021-02-04
000892827 915__ $$0StatID:(DE-HGF)0113$$2StatID$$aWoS$$bScience Citation Index Expanded$$d2021-02-04
000892827 915__ $$0StatID:(DE-HGF)0700$$2StatID$$aFees$$d2021-02-04
000892827 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection$$d2021-02-04
000892827 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5$$d2021-02-04
000892827 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000892827 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bDOAJ : Blind peer review$$d2021-02-04
000892827 915__ $$0StatID:(DE-HGF)0561$$2StatID$$aArticle Processing Charges$$d2021-02-04
000892827 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences$$d2021-02-04
000892827 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline$$d2021-02-04
000892827 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bClarivate Analytics Master Journal List$$d2021-02-04
000892827 9201_ $$0I:(DE-Juel1)PGI-3-20110106$$kPGI-3$$lFunktionale Nanostrukturen an Oberflächen$$x0
000892827 980__ $$ajournal
000892827 980__ $$aVDB
000892827 980__ $$aUNRESTRICTED
000892827 980__ $$aI:(DE-Juel1)PGI-3-20110106
000892827 9801_ $$aFullTexts