001     892833
005     20220930130317.0
024 7 _ |a 10.1038/s41467-021-23292-9
|2 doi
024 7 _ |a 2128/27957
|2 Handle
024 7 _ |a altmetric:89631227
|2 altmetric
024 7 _ |a 34035263
|2 pmid
024 7 _ |a WOS:000658774600015
|2 WOS
037 _ _ |a FZJ-2021-02373
082 _ _ |a 500
100 1 _ |a Kaiser, Franz
|0 P:(DE-Juel1)176610
|b 0
245 _ _ |a Network isolators inhibit failure spreading in complex networks
260 _ _ |a [London]
|c 2021
|b Nature Publishing Group UK
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1636104895_6263
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a In our daily lives, we rely on the proper functioning of supply networks, from power grids to water transmission systems. A single failure in these critical infrastructures can lead to a complete collapse through a cascading failure mechanism. Counteracting strategies are thus heavily sought after. In this article, we introduce a general framework to analyse the spreading of failures in complex networks and demonstrate that not only decreasing but also increasing the connectivity of the network can be an effective method to contain damages. We rigorously prove the existence of certain subgraphs, called network isolators, that can completely inhibit any failure spreading, and we show how to create such isolators in synthetic and real-world networks. The addition of selected links can thus prevent large scale outages as demonstrated for power transmission grids.
536 _ _ |a 111 - Energiesystemtransformation (POF4-111)
|0 G:(DE-HGF)POF4-111
|c POF4-111
|f POF IV
|x 0
536 _ _ |a VH-NG-1025 - Helmholtz Young Investigators Group "Efficiency, Emergence and Economics of future supply networks" (VH-NG-1025_20112014)
|0 G:(HGF)VH-NG-1025_20112014
|c VH-NG-1025_20112014
|x 1
536 _ _ |a CoNDyNet 2 - Kollektive Nichtlineare Dynamik Komplexer Stromnetze (BMBF-03EK3055B)
|0 G:(DE-JUEL1)BMBF-03EK3055B
|c BMBF-03EK3055B
|x 2
536 _ _ |a ES2050 - Energie System 2050 (ES2050)
|0 G:(DE-HGF)ES2050
|c ES2050
|x 3
588 _ _ |a Dataset connected to CrossRef, Journals: juser.fz-juelich.de
700 1 _ |a Latora, Vito
|0 0000-0002-0984-8038
|b 1
700 1 _ |a Witthaut, Dirk
|0 P:(DE-Juel1)162277
|b 2
|e Corresponding author
773 _ _ |a 10.1038/s41467-021-23292-9
|g Vol. 12, no. 1, p. 3143
|0 PERI:(DE-600)2553671-0
|n 1
|p 3143
|t Nature Communications
|v 12
|y 2021
|x 2041-1723
856 4 _ |u https://juser.fz-juelich.de/record/892833/files/PDF.js%20viewer.pdf
856 4 _ |u https://juser.fz-juelich.de/record/892833/files/s41467-021-23292-9.pdf
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:892833
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)176610
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)162277
913 1 _ |a DE-HGF
|b Forschungsbereich Energie
|l Energiesystemdesign (ESD)
|1 G:(DE-HGF)POF4-110
|0 G:(DE-HGF)POF4-111
|3 G:(DE-HGF)POF4
|2 G:(DE-HGF)POF4-100
|4 G:(DE-HGF)POF
|v Energiesystemtransformation
|x 0
913 0 _ |a DE-HGF
|b Energie
|l Technologie, Innovation und Gesellschaft
|1 G:(DE-HGF)POF3-150
|0 G:(DE-HGF)POF3-153
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-100
|4 G:(DE-HGF)POF
|v Assessment of Energy Systems – Addressing Issues of Energy Efficiency and Energy Security
|x 0
914 1 _ |y 2021
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
|d 2021-02-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1040
|2 StatID
|b Zoological Record
|d 2021-02-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1060
|2 StatID
|b Current Contents - Agriculture, Biology and Environmental Sciences
|d 2021-02-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
|d 2021-02-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
|d 2021-02-02
915 _ _ |a Article Processing Charges
|0 StatID:(DE-HGF)0561
|2 StatID
|d 2021-02-02
915 _ _ |a WoS
|0 StatID:(DE-HGF)0113
|2 StatID
|b Science Citation Index Expanded
|d 2021-02-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
|d 2021-02-02
915 _ _ |a Fees
|0 StatID:(DE-HGF)0700
|2 StatID
|d 2021-02-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
|d 2021-02-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
|d 2021-02-02
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b NAT COMMUN : 2019
|d 2021-02-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
|d 2021-02-02
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
|d 2021-02-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1190
|2 StatID
|b Biological Abstracts
|d 2021-02-02
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a IF >= 10
|0 StatID:(DE-HGF)9910
|2 StatID
|b NAT COMMUN : 2019
|d 2021-02-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Clarivate Analytics Master Journal List
|d 2021-02-02
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b DOAJ : Peer review
|d 2021-02-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0160
|2 StatID
|b Essential Science Indicators
|d 2021-02-02
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0320
|2 StatID
|b PubMed Central
|d 2021-02-02
920 _ _ |l no
920 1 _ |0 I:(DE-Juel1)IEK-STE-20101013
|k IEK-STE
|l Systemforschung und Technologische Entwicklung
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-STE-20101013
980 _ _ |a APC
980 _ _ |a UNRESTRICTED
980 1 _ |a APC
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21